Epidemics

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo - https://chato.cl/teach

Sources

- A. L. Barabási (2016). Network Science Chapter 10
- D. Easley and J. Kleinberg (2010). Networks, Crowds, and Markets - Chapter 21
- URLs cited in the footer of slides

Examples: human epidemics

- Influenza, measles, STIs, ...
- Smallpox and other diseases brought by Europeans to America since early 1500s
- The "Black Death" (next slide)

Population Collapse in Mexico

The "Black Death" (Bubonic plague) 1300s

Killed 30\%-60\% of the total population of Europe

SARS Outbreak (2003)

- February 21st: Chinese doctor who have been several treating "atypical pneumonia" cases check-ins into hotel in Hong Kong
- Hospitalized on Feb 22 ${ }^{\text {nd }}$
- Died on March $4^{\text {th }}$
- March 1st: "Ms. E. M." returns to Singapore after visiting Hong Kong
- Graph depicts 144 out of the first 206 SARS patients in Singapore
- Ms. E. M. lived, various of her family members died

COVID-19

Why this curve?

How can one make this kind of forecast?

Diffusion of ideas vs diseases

- Adopting a new idea, behavior, fashion, product, taste, may also spread from person to person: "social contagion"
- There is a certain agency of the receiver
- In diffusion of diseases, we assume there is no agency: each contagion is random

Simple model: branching process

Modeling epidemics

- There are many factors:
- Contagiousness
- Length of infectious period,
- Severity
- ...
- Structure of contacts in a population

Simple model:

branching process

- Each person interacts with other k people
- Each interaction ends in infection with probability β

Transmission rate or "Basic reproductive

- Each person interacts with other k people
- Each interaction ends in infection with probability β

number" R_{0}

- What is the expected number of cases caused by a single individual, R_{0} ?
- What do you think happens if $\mathrm{R}_{0}<1$?
- What do you think happens if $\mathrm{R}_{0}>1$?

Disease	Transmission	$\mathbf{R}_{\mathbf{0}}$
Measles	Airborne	$12-18$
Pertussis	Airborne droplet	$12-17$
Diptheria	Saliva	$6-7$
Smallpox	Social contact	$5-7$
Polio	Fecal-oral route	$5-7$
Rubella	Airborne droplet	$5-7$
Mumps	Airborne droplet	$4-7$
HIV/AIDS	Sexual contact	$2-5$
SARS	Airborne droplet	$2-5$
Influenza	Airborne droplet	$2-3$
$(1918$ strain)		

Changing $R_{o}=\beta k$

- Sanitary practices reduce β

- Quarantine reduces k

The SI model

The SI model

- Susceptible:

- The node can catch the disease
- Infected:
- The node has the disease and can spread it
- It will stay sick forever

Notation

- Number of susceptible $S(\mathrm{t})$
- Fraction of susceptible $s(t)=S(t) / N$
- Number of infected $I(t)$
- Fraction of infected $\mathrm{i}(\mathrm{t})=\mathrm{I}(\mathrm{t}) / \mathrm{N}$
- $s(t)+i(t)=1$

How many susceptible neighbors a node has?

$$
\langle k\rangle \frac{S(t)}{N}=\langle k\rangle s(t)
$$

How many new infections are produced?

(for every infected, iterate through its susceptible neighbors, infect with probability β)

Prove that $i(t)=\frac{i_{0} e^{\beta(k) t}}{1-i_{0}+i_{0} e^{\beta(k) t}}$

Begin from: $\frac{d i(t)}{d t}=i(t)\langle k\rangle(1-i(t)) \beta$
First, place all terms with $i(t)$ on the left side
Second, use $\frac{1}{x \cdot(1-x)}=\frac{1}{x}+\frac{1}{1-x}$
Third, integrate from $t=0$ to t and denote by $i_{0}=i(t=0)$
$\int \frac{1}{x} d x=\log x+C \quad \int \frac{1}{1-x} d x=-\log (1-x)+C$

Behavior in the limit $t \rightarrow \infty$

- What is the limit of

$$
i(t)=\frac{i_{0} e^{\beta\langle k\rangle t}}{1-i_{0}+i_{0} e^{\beta\langle k\rangle t}}
$$ when $t \rightarrow \infty$?

- Hint: similar to

$$
f(t)=\frac{e^{t}}{1+e^{t}}
$$

Infected as a function of time (SI)
 $$
i(t)=\frac{i_{0} e^{\beta\langle k\rangle t}}{1-i_{0}+i_{0} e^{\beta\langle k\rangle t}}
$$

Characteristic time
(to infect $1 / \mathrm{e} \simeq 36 \%$ of people):

$$
\tau=\frac{1}{\beta\langle k\rangle}
$$

The SIS model

The SIS model

- Susceptible:

- The node can catch the disease
- Infected:
- The node has the disease and can spread it
- After some time, it recovers ... but it becomes susceptible again

Infection dynamics

$$
\frac{d i(t)}{d t}=\beta\langle k\rangle i(t)(1-i(t))-\mu i(t)
$$

- μ is the recovery rate, i.e., the probability of becoming susceptible again in an unit of time

$$
i(t)=\left(1-\frac{\mu}{\beta\langle k\rangle}\right) \frac{C e^{(\beta\langle k\rangle-\mu) t}}{1+C e^{(\beta\langle k\rangle-\mu) t}}
$$

- C is a constant that depends on i_{0}

Behavior in the limit $t \rightarrow \infty$

- What is the limit of $i(t)=\left(1-\frac{\mu}{\beta\langle k\rangle}\right) \frac{C e^{(\beta\langle k\rangle-\mu) t}}{1+C e^{(\beta\langle k\rangle-\mu) t}}$ when $t \rightarrow \infty$?
- Hint: similar to

$$
f(t)=\alpha \frac{e^{t}}{1+e^{t}}
$$

Infected as a
 function of time (SIS)

$i(t)=\left(1-\frac{\mu}{\beta\langle k\rangle}\right) \frac{C e^{(\beta\langle k\rangle-\mu) t}}{1+C e^{(\beta\langle k\rangle-\mu) t}}$

This is in the case $\mu<\beta\langle k\rangle$

outbreak
endemic state
$i(\infty)=1-\frac{\mu}{\beta\langle k\rangle}$

What happens if $\quad \mu>\beta\langle k\rangle$?

- Remember: $\frac{d i(t)}{d t}=\beta\langle k\rangle i(t)(1-i(t))-\mu i(t)$

The SIR model

The SIR model

- Susceptible:
- The node can catch the disease
- Infected:
- The node has the disease and can spread it
- Removed:
- The node no longer has the disease, and cannot catch it or propagate it again (permanent immunity -or- death)

Infection dynamics in SIR

$$
\begin{aligned}
\frac{d i(t)}{d t} & =\beta\langle k\rangle i(t)(1-r(t)-i(t))-\mu i(t) \\
\frac{d r(t)}{d t} & =\mu i(t) \\
\frac{d s(t)}{d t} & =-\frac{d i(t)}{d t}-\frac{d r(t)}{d t}=-\beta\langle k\rangle i(t)(1-r(t)-i(t))
\end{aligned}
$$

- No closed form solution

Infection dynamics

(SIR)

$$
\begin{aligned}
\frac{d i(t)}{d t} & =\beta\langle k\rangle i(t)(1-r(t)-i(t))-\mu i(t) \\
\frac{d r(t)}{d t} & =\mu i(t) \\
\frac{d s(t)}{d t} & =-\beta\langle k\rangle i(t)(1-r(t)-i(t))
\end{aligned}
$$

Comparison of

 $i(t)$

Exponential Regime:
Number of infected individuals grows exponentially

$$
i=\frac{i_{0} e^{\beta(k) t}}{1-i_{0}+i_{0} e^{\beta(k) t}}
$$

$$
i=\left(1-\frac{\mu}{\beta\langle k\rangle}\right) \frac{C e^{(\beta(k)-\mu) t}}{1+C e^{(\beta(k)-\mu) t}}
$$

No closed solution

Final Regime:
Saturation at $\mathrm{t} \rightarrow=\infty$
$i(\infty)=1$
$i(\infty)=1-\frac{\mu}{\beta\langle k\rangle}$
$i(\infty)=0$

Epidemic Threshold:
Disease does not always spread

$$
R_{0}=1
$$

$$
R_{0}=1
$$

Things to remember

- SI, SIS, SIR models
- Which are the states in each process and which are the possible transitions
- Equations for number of nodes in each state
- Regimes under different parameters
- Practice executing by hand and write code if it helps you remember better each process

Practice on your own

Under the SIS model,

$$
i(t)=\left(1-\frac{\mu}{\beta\langle k\rangle}\right) \frac{C e^{(\beta\langle k\rangle)-\mu) t}}{1+C e^{(\beta(k)-\mu) t}}
$$

1. When $\mu<\beta\langle k\rangle$ what is the limit of $i(t)$?
2.How is this state called?
2. What happens when $\mu>\beta\langle k\rangle$?
3. What conditions lead to large values of $i(t)$?

Practice on your own (cont.)

- In the SIRS epidemic model, there are three possible states for a node: susceptible, infected, and recovered. Susceptible nodes can become infected, infected nodes can become recovered, and recovered nodes can become susceptible again.
- During one unit of time, with probability β an infected node can infect one of its contacts, with probability μ, an infected node can recover, and with probability σ, a recovered node can become susceptible again.
- Let $s(t)$ be the fraction of susceptible nodes, $i(t)$ be the fraction of infected nodes, $r(t)$ the fraction of recovered nodes, and $<k>$ the average degree of the graph. Write the equations, simplifying them appropriately, for:

$$
\text { 1. } \frac{d i(t)}{d t} \text { 2. } \frac{d r(t)}{d t} \text { 3. } \frac{d s(t)}{d t}
$$

4. Is $\sigma>\mu$ sufficient to say that the recovered will tend to zero in the long run?
