Epidemics

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo — <u>https://chato.cl/teach</u>

Sources

- A. L. Barabási (2016). Network Science Chapter 10
- D. Easley and J. Kleinberg (2010). Networks, Crowds, and Markets Chapter 21
- URLs cited in the footer of slides

Examples: human epidemics

- Influenza, measles, STIs, ...
- Smallpox and other diseases
 brought by Europeans to
 America since early 1500s
- The "Black Death" (next slide)

https://en.wikipedia.org/wiki/Cocoliztli_Epidemic_of_1545-1548

The "Black Death" (Bubonic plague) 1300s

Killed **30%-60%** of the total population of Europe

https://commons.wikimedia.org/wiki/File:1346-1353_spread_of_the_Black_Death_in_Europe_map.svg

SARS Outbreak (2003)

- February 21st: Chinese doctor who have been several treating "atypical pneumonia" cases check-ins into hotel in Hong Kong
 - [–] Hospitalized on Feb 22^{nd}
 - [–] Died on March 4^{th}
- March 1st: "Ms. E. M." returns to Singapore after visiting Hong Kong
 - Graph depicts 144 out of the first 206 SARS patients in Singapore
 - Ms. E. M. lived, various of her family members died

https://en.wikipedia.org/wiki/Timeline_of_the_SARS_outbreak

Why this curve?

How can one make this kind of forecast?

COVID-19 cases in Catalonia as of July 2020 - https://cnecovid.isciii.es/covid19/#ccaa

Diffusion of ideas vs diseases

- Adopting a new idea, behavior, fashion, product, taste, may also spread from person to person: "social contagion"
- There is a certain agency of the receiver
- In diffusion of diseases, we assume there is no agency: each contagion is random

Simple model: branching process

Modeling epidemics

- There are many factors:
 - Contagiousness
 - Length of infectious period,
 - Severity

. . .

• Structure of contacts in a population

Simple model: branching process

- Each person interacts with other k people
- Each interaction ends in infection with probability eta

Example: k=3

)/34

Transmission rate or "Basic reproductive number" R₀

- Each person interacts with other k people
- Each interaction ends in infection with probability β

- What is the expected number of cases caused by a single individual, R₀?
- What do you think happens if $R_0 < 1$?
- What do you think happens if $R_0 > 1$?

Disease	Transmission	R ₀
Measles	Airborne	12-18
Pertussis	Airborne droplet	12-17
Diptheria	Saliva	6-7
Smallpox	Social contact	5-7
Polio	Fecal-oral route	5-7
Rubella	Airborne droplet	5-7
Mumps	Airborne droplet	4-7
HIV/AIDS	Sexual contact	2-5
SARS	Airborne droplet	2-5
Influenza (1918 strain)	Airborne droplet	2-3

Changing $R_0 = \beta k$

• Sanitary practices (to reduce what?)

Quarantine (to reduce what?)

Disease	Transmission	R ₀
Measles	Airborne	12-18
Pertussis	Airborne droplet	12-17
Diptheria	Saliva	6-7
Smallpox	Social contact	5-7
Polio	Fecal-oral route	5-7
Rubella	Airborne droplet	5-7
Mumps	Airborne droplet	4-7
HIV/AIDS	Sexual contact	2-5
SARS	Airborne droplet	2-5
Influenza (1918 strain)	Airborne droplet	2-3

Changing $R_0 = \beta k$

- Sanitary practices reduce β
- **Quarantine** reduces *k*

The SI model

The SI model

- Susceptible:
 - The node can catch the disease
- Infected:
 - The node has the disease and can spread it
 - It will stay sick forever

Notation

- Number of susceptible S(t)
 - [–] Fraction of susceptible s(t) = S(t) / N
- Number of infected I(t)
 - [–] Fraction of infected i(t) = I(t) / N
- s(t) + i(t) = 1

How many susceptible neighbors a node has?

$$\langle k \rangle \, \frac{S(t)}{N} = \langle k \rangle \, s(t)$$

How many new infections are produced?

(for every infected, iterate through its susceptible neighbors, infect with probability β)

Prove that
$$i(t) = \frac{i_0 e^{\beta \langle k \rangle t}}{1 - i_0 + i_0 e^{\beta \langle k \rangle t}}$$

Begin from: $\frac{di(t)}{dt} = i(t) \langle k \rangle (1 - i(t)) \beta$

First, place all terms with i(t) on the left side

Second, use $\frac{1}{x \cdot (1-x)} = \frac{1}{x} + \frac{1}{1-x}$

Third, integrate from t = 0 to t and denote by $i_0 = i(t = 0)$

$$\int \frac{1}{x} dx = \log x + C \qquad \int \frac{1}{1-x} dx = -\log(1-x) + C$$

Behavior in the limit $t \to \infty$ • What is the limit of $i(t) = \frac{i_0 e^{\beta \langle k \rangle t}}{1 - i_0 + i_0 e^{\beta \langle k \rangle t}}$ when $t \to \infty$?

$$f(t) = \frac{e^t}{1 + e^t}$$

• Hint: similar to

The SIS model

The SIS model

- Susceptible:
 - The node can catch the disease
- Infected:
 - The node has the disease and can spread it
 - After some time, it recovers ... but it becomes susceptible again

Infection dynamics

$$\frac{di(t)}{dt} = \beta \langle k \rangle i(t)(1 - i(t)) - \mu i(t)$$

• μ is the recovery rate, i.e., the probability of becoming susceptible again in an unit of time

$$i(t) = \left(1 - \frac{\mu}{\beta \langle k \rangle}\right) \frac{C e^{(\beta \langle k \rangle - \mu)t}}{1 + C e^{(\beta \langle k \rangle - \mu)t}}$$

• C is a constant that depends on i₀

Behavior in the limit $t \rightarrow \infty$

• What is the limit of $i(t) = \left(1 - \frac{\mu}{\beta \langle k \rangle}\right) \frac{Ce^{(\beta \langle k \rangle - \mu)t}}{1 + Ce^{(\beta \langle k \rangle - \mu)t}}$ when $t \rightarrow \infty$?

• Hint: similar to

$$f(t) = \alpha \frac{e^t}{1 + e^t}$$

What happens if $\mu > \beta \langle k \rangle$?

• **Remember:** $\frac{di(t)}{dt} = \beta \langle k \rangle i(t)(1 - i(t)) - \mu i(t)$

The SIR model

The SIR model

- Susceptible:
 - The node can catch the disease
- Infected:
 - The node has the disease and can spread it
- Removed:
 - The node no longer has the disease, and cannot catch it or propagate it again (permanent immunity -or- death)

Infection dynamics in SIR

$$\begin{aligned} \frac{di(t)}{dt} &= \beta \langle k \rangle \, i(t)(1 - r(t) - i(t)) - \mu i(t) \\ \frac{dr(t)}{dt} &= \mu i(t) \\ \frac{ds(t)}{dt} &= -\frac{di(t)}{dt} - \frac{dr(t)}{dt} = -\beta \langle k \rangle \, i(t)(1 - r(t) - i(t)) \end{aligned}$$

No closed form solution

Infection dynamics (SIR) $\frac{di(t)}{dt} = \beta \langle k \rangle i(t)(1 - r(t) - i(t)) - \mu i(t)$ $\frac{d\vec{r(t)}}{dt} = \mu i(t)$ $\frac{ds(t)}{dt} = -\beta \langle k \rangle i(t)(1 - r(t) - i(t))$

Comparison of i(t)

Things to remember

- SI, SIS, SIR models
- Which are the states in each process and which are the possible transitions
- Equations for number of nodes in each state
- Regimes under different parameters
- Practice executing by hand and write code if it helps you remember better each process

Practice on your own

Under the **SIS** model,
$$i(t) = \left(1 - \frac{\mu}{\beta \langle k \rangle}\right) \frac{Ce^{(\beta \langle k \rangle - \mu)t}}{1 + Ce^{(\beta \langle k \rangle - \mu)t}}$$

1.When
$$\mu < eta \left< k \right>$$
 what is the limit of $i(t)$?

2. How is this state called?

3. What happens when $\mu > \beta \langle k \rangle$?

4. What conditions lead to large values of i(t) ?

Practice on your own (cont.)

- In the SIRS epidemic model, there are three possible states for a node: susceptible, infected, and recovered. Susceptible nodes can become infected, infected nodes can become recovered, and *recovered nodes can become susceptible again*.
- During one unit of time, with probability β an infected node can infect one of its contacts, with probability μ , an infected node can recover, and with probability σ , a recovered node can become susceptible again.
- Let s(t) be the fraction of susceptible nodes, i(t) be the fraction of infected nodes, r(t) the fraction of recovered nodes, and <k> the average degree of the graph. Write the equations, simplifying them appropriately, for:

$$1.\frac{di(t)}{dt} \quad 2.\frac{dr(t)}{dt} \quad 3.\frac{ds(t)}{dt}$$

4. Is $\sigma > \mu$ sufficient to say that the recovered will tend to zero in the long run?