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Spectral Graph Embedding

Social Networks Analysis and Graph Algorithms
Prof. Carlos Castillo — https://chato.cl/teach 

https://chato.cl/teach
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Sources
● J. Leskovec (2016). Defining the graph laplacian [video]
● E. Terzi (2013). Graph cuts — The part on spectral 

graph partitioning
● D. A. Spielman (2009): The Laplacian
● URLs cited in the footer of slides

https://www.youtube.com/watch?v=AR7iFxM-NkA
http://cs-people.bu.edu/evimaria/cs565-13/cuts.pdf
http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf
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Many algorithms are not suitable for graphs
● Many algorithms need a notion of similarity or 

distance (both are interchangeable)
● Data mining: clustering, outlier detection, ...
● Retrieval/search: nearest neighbors, ...
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Graphs are nice, but ...
● They describe only local relationships
● We would like to understand a global structure
● We will try to transform a graph into a more familiar object: a 

cloud of points in Rk

R1
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Graphs are nice, but ...

R1

Distances should be somehow preserved

● They describe only local relationships
● We would like to understand a global structure
● We will try to transform a graph into a more familiar object: a 

cloud of points in Rk
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What is a graph embedding?
● A graph embedding (or graph projection) is a 

mapping from a graph to a vector space
● If the vector space is       you can think of an 

embedding as a way of drawing a graph on paper
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Exercise: draw this graph
V = {v1, v2, …, v8}
E = { (v1, v2), (v2, v3), (v3, v4), (v4, v1), (v5, v6), (v6, v7), (v7, v8),
          (v8, v5), (v1,v5), (v2, v6), (v3, v7), (v4, v8) }

Draw this graph on paper, upload a photo

What constitutes a good drawing?

Padlet: https://upfbarcelona.padlet.org/chato/3hwnctvqb7p1z6xx

https://upfbarcelona.padlet.org/chato/3hwnctvqb7p1z6xx
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In a good graph embedding ...
● Pairs of nodes that are connected to each other 

should be close
● Pairs of nodes that are not connected should be far
● Compromises will need to be made
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Random projections
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Random graph projection (2D)
● Start a BFS from a random node, that has x=1, and 

nodes visited have ascending x 
● Start a BFS from another random node, which has 

y=1, and nodes visited have ascending y
● Project node i to position (xi, yi)
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Exercise: random projection
● Given this graph
● Pick a random node u

– Distances from u are the x positions
● Pick a random node v

– Distances from v are the y positions
● Draw the graph in an      plane

a

b

c

d

e

f

g

h

i

Padlet: https://upfbarcelona.padlet.org/chato/9pd56scbpko5svdj 

https://upfbarcelona.padlet.org/chato/9pd56scbpko5svdj
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Refresher about 
eigenvectors/eigenvalues
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Eigenvectors of symmetric matrices
● In general Av = λv means A has an eigenvector v of eigenvalue λ
● In symmetric matrices (A=AT), eigenvectors are orthogonal

Suppose v1, v2 are eigenvectors of eigenvalues λ1, λ2 with λ1 ≠ λ2 

For any real matrix

● Therefore:
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In symmetric matrices
● The multiplicity of an eigenvalue λ is the dimension 

of the space of eigenvectors of eigenvalue λ
● Every n x n symmetric matrix has n eigenvalues 

counted with multiplicity
● Hence, it has an orthonormal basis of eigenvectors
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Rayleigh quotient

In symmetric matrices M, the second smallest 
eigenvalue is

https://en.wikipedia.org/wiki/Rayleigh_quotient 

https://en.wikipedia.org/wiki/Rayleigh_quotient
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Eigenvectors of the adjacency matrix
(of an unweighted graph)
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Adjacency matrix (of unweighted graph)

● How many non-zeros are in every row of A?

https://www.youtube.com/watch?v=AR7iFxM-NkA 

https://www.youtube.com/watch?v=AR7iFxM-NkA
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Adjacency matrix of G=(V,E)

Can you write yi using E ? 

https://www.youtube.com/watch?v=AR7iFxM-NkA 

https://www.youtube.com/watch?v=AR7iFxM-NkA
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Adjacency matrix of G=(V,E)

● What is Ax? Think of x as a set of labels/values:

Ax is a vector whose ith 
coordinate contains the sum of 
the xj who are in-neighbors of i

https://www.youtube.com/watch?v=AR7iFxM-NkA 

https://www.youtube.com/watch?v=AR7iFxM-NkA
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Spectral graph theory ...
● Studies the eigenvalues and eigenvectors of a graph matrix

– Adjacency matrix
– Laplacian matrix (next)

● Suppose graph is d-regular:
● Multiply its adjacency by 1
● Look at the result, what

does it imply?
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An eigenvector of a d-regular graph
● Suppose graph is d-regular, i.e. all nodes have degree d:

● Hence, [1, 1, …, 1]T is an eigenvector of eigenvalue d
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Disconnected graphs
● Suppose the graph is regular and disconnected

● Then its adjacency matrix has block structure:

S S'
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Disconnected graphs
● Suppose the graph is regular and disconnected

S S'
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Disconnected graphs
● Suppose the graph is regular and disconnected

● What is the multiplicity of eigenvalue d?
● What happens if there are more than 2 connected 

components?

S S'
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In general

Disconnected graph Almost disconnected graph

Small “eigengap”
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Graph Laplacian
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Adjacency matrix

3

2

1

4

5

6
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Degree matrix
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5

6
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Laplacian matrix

3

2

1

4

5

6

Because A is symmetric, and we have only 
changed the diagonal, L is symmetric.
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Laplacian matrix L = D - A
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The constant vector is an eigenvector of L
The constant vector x=[1,1,...,1]T is an eigenvector 
of the Laplacian, and has eigenvalue 0

Does it need to be this specific graph? Why?
Does it need to be the vector [1, 1, …, 1]? Why? 
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If the graph is disconnected

● If the graph is disconnected into two components, 
the same argument as for the adjacency matrix 
applies, and

● The multiplicity of eigenvalue 0 is equal to the 
number of connected components
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Prove this!

Assume that E only contains each edge in one direction
Think of this quantity as the “stress” produced by the assignment of node labels x

Prove that
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As shown before, the constant vector is one of the 
eigenvectors of L, with eigenvalue  0

● If x is such that xi = xj for all i,j:

● This means the constant vector is an eigenvector of 
L with eigenvalue 0
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The eigenvector x of λ=0 is the constant vector
if the graph is connected

● If x is the eigenvector of eigenvalue 0, Lx = 0
● Then

From this, we deduct that xi = xj for any pair i, j 
even if i and j are not directly connected by an edge. Why?
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● If x is the eigenvector of eigenvalue 0, Lx = 0
● Then

● Hence, for any pair of nodes (i,j) connected by an edge, xi = xj

● Given the graph is connected, there is a path between any two nodes ⇒
for any pair of nodes (i,j), even the ones not connected by an edge, xi = xj

● Hence x is a constant vector

The eigenvector x of λ=0 is the constant vector
if the graph is connected
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All the eigenvalues of the Laplacian
are non-negative

● If v is an eigenvector of L of eigenvalue λ:

● This means all eigenvalues λ are non-negative
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In summary, the
Laplacian matrix L = D - A

● Is symmetric, eigenvectors are orthogonal
● Has N eigenvalues that are non-negative
● 0 is one eigenvalue
● The multiplicity of eigenvalue 0 equals the number of 

connected components of the graph
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The second smallest eigenvalue
of the Laplacian 
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xTLx and graph cuts
● Suppose c(S, S') is a cut of graph G
● Set 

0

0
1

1

1
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Remember
● For symmetric matrices

● If x is an eigenvector,        is its eigenvalue

https://en.wikipedia.org/wiki/Rayleigh_quotient 

https://en.wikipedia.org/wiki/Rayleigh_quotient
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Second eigenvector

● Orthogonal to the first one:
● Normal:
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The second eigenvalue in a 
disconnected graph

If the graph is divided into two 
connected components of sizes 
N1 and N2, you can use this 
assignment

0.32...

0.32...

0.32...

0.32... —0.44...
—0.44...

—0.44...

What’s its eigenvalue?
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The second eigenvalue tells us 
how well the graph can be 

partitioned into two

0

If the graph is 
connected but almost 
partitioned into two 
component, the 
optimal x should have 
values similar to each 
other in each partition
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Example Graph 1
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Example Graph 1 (second eigenvalue of L)
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Example Graph 1, projected in R1
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Example Graph 1, communities
S’ S
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Example Graph 2
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Example Graph 3
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Example Graph 3, projected (where to cut?)

1
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7
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0-0.057-0.246
-0.210

-0.364 0.5510.139
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Example Graph 3, projected (where to cut?)
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0-0.057-0.246
-0.210

-0.364 0.5510.139

S S'
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A graph with two communities in    

https://www.youtube.com/watch?v=jpTjj5PmcMM 

Ordered from smaller to larger value

S
ec

on
d 

ei
ge

nv
ec

to
r

https://www.youtube.com/watch?v=jpTjj5PmcMM
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Ordered from smaller to larger value

A graph with four communities in    
Note the hierarchical 
community structure

https://www.youtube.com/watch?v=jpTjj5PmcMM
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Application: graph drawing
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A graph with four communities in     

Second eigenvector Third eigenvector

Value in second eigenvector

Va
lu

e 
in

 th
ird

 e
ig

en
ve

ct
or

https://www.youtube.com/watch?v=jpTjj5PmcMM 

https://www.youtube.com/watch?v=jpTjj5PmcMM
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A graph with four communities in R2 (cont)

Second eigenvector Third eigenvector

Value in second eigenvector

Va
lu

e 
in

 th
ird

 e
ig

en
ve

ct
or

https://www.youtube.com/watch?v=jpTjj5PmcMM 

This can be 
used to draw 

the graph in R2

https://www.youtube.com/watch?v=jpTjj5PmcMM
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The graph from the initial exercise
a

b

c

d

e

f

g

h

i

Input nodes and edges

Spectral embedding

value in second eigenvector

va
lu

e 
in

 th
ird

 e
ige

nv
ec

to
r

a=e 

d=f
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Exercise: spectral projection
● Write the Laplacian
● Get the second and third eigenvector

(e.g., “online eigenvector calculator”)
● Obtain projection

a

b

c

Link to spreadsheet: https://upfbarcelona.padlet.org/chato/shyq9m6f2g2dh1bw 

f

e

d

https://upfbarcelona.padlet.org/chato/shyq9m6f2g2dh1bw
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A barbell graph in R2 (code)

B = nx.barbell_graph(10,2)

plt.figure(figsize=(6,6))
nx.draw_networkx(B)
_ = plt.show()

plt.figure(figsize=(6,6))
nx.draw_spectral(B)
_ = plt.show()

Graph Laplacian
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Dodecahedral graph in 3D

g = nx.dodecahedral_graph()
pos = nx.spectral_layout(g, dim=3)
network_plot_3D_alt(g, 60, pos)

https://www.idtools.com.au/3d-network-graphs-python-mplot3d-toolkit/  

https://www.idtools.com.au/3d-network-graphs-python-mplot3d-toolkit/
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Application: spectral clustering
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Generating data
from sklearn.datasets import
   make_blobs

N = 1000

x, _ = make_blobs(
   n_samples=N,
   centers=3,
   cluster_std=1.2)

plt.figure(figsize=(8,8))

plt.scatter(x[:,0], x[:,1])

plt.show()
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Connect nodes to k=5 nearest neighbors
from sklearn.neighbors
   import NearestNeighbors

nbrs = NearestNeighbors(
    n_neighbors=6,         # includes self
    algorithm='ball_tree')
    .fit(x)

distances, neighbors =
    nbrs.kneighbors(x)

G = nx.Graph()

for neighbor_list in neighbors:

    source_node = neighbor_list[0]

    for target_index in range(1,
        len(neighbor_list)):

        target_node = neighbor_list[target_index]

        G.add_edge(source_node, target_node)
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Perform spectral embedding
nx.draw_spectral(G, with_labels=True)
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Perform spectral embedding
nx.draw_spectral(G, with_labels=True)
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Summary



78/70

Things to remember
● Graph Laplacian
● Laplacian and graph components
● Spectral graph embedding
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Exercises for this topic
● Mining of Massive Datasets (2014) by Leskovec et 

al.
– Exercises 10.4.6
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