Introd **Instructor: Michele Star**

Content

• Degree-based solution of SIS model on SF networks

• Real-world network epidemiology

Modeling epidemics

• **Modeling Epidemic process (dynamics):**

- Branching process
- SI model
- SIR model
- SIS model
- **Modeling underlying network substrate (static)**
	- Mean-field mixing (fully connected network)
	- Homogeneous networks (ER networks)
	- Heterogeneous networks (SF networks)

abstraction, conceptualization

ien Armen in der eine erster ander

Modeling underlying network

<u> 1978 : Maria Maria Alexandria (1974)</u>

Modeling underlying networks

 \bullet

 \bullet

- ‣ Homogeneous mixing is not always realistic
- ‣ Contacts are not equal and not constant across groups.
- ‣ Real contact networks display high heterogeneities

Epidemics on networks

Degree-based solution of the SIS model on scale-free networks

- We consider a network of N nodes where each node can be in an epidemic state, S, I or R
- We define the density of nodes in a given state, as:

$$
\rho^{S}(t) = \frac{S(t)}{N}, \rho^{I}(t) = \frac{I(t)}{N}, \rho^{R}(t) = \frac{R(t)}{N}
$$

Epidemics on networks

$$
\sum_{\alpha} \rho_k^{\alpha} = 1
$$

Degree-based mean field

- \blacktriangleright Nodes with the same degree k are considered as statistically equivalent
- \triangleright Fraction of nodes in each compartment: ρ_k^{α} α , $\alpha = S$, I, R
- ‣ These variables are not independent: ∑
- Fraction of individuals in compartment α at time t to $\rho^{\alpha}(t) = \sum_{\alpha}$ \boldsymbol{k} $P(k)\rho_k^{\alpha}$ $_{k}^{\alpha}(t)$

network approximation).

 $\hfill \Box$

- ‣ The adjacency matrix is completely "destroyed". Only the degree and the two-vertex correlations of each node are preserved.
-
- ‣ The adjacency matrix is replaced by its ensemble average:

 A_{ij}

 $k_j P(k_i|k_j)$ $NP(k_i)$

Degree-based mean field

• The network is considered in a mean-field perspective (annealed

Probability that a node of degree k Transmission with degree k, susceptible is connected to an infected node of degree k'

$= \beta k [1 - \rho_k^l]$ $\frac{1}{k}(t)$ $\overline{k'}$ $P(k^{\prime}%)=\sqrt{p_{k}^{2}+p_{$ $|k)\rho_k^I(t) - \mu \rho_k^I(t)$ The DBMF SIS model Sum over all possible k' Number of nodes recovering

$d\rho^I_k$ $\frac{1}{k}(t)$ dt $= \beta k[1 - \rho_k^l]$ $\frac{1}{k}(t)]\sum_{i=1}^{k}$ $\overline{k'}$ $P(k^{\prime}%)=\sum_{r,s\in S_{n}}p_{r,s}\cdot r_{s}^{r,s}\cdot r_{s}^{s}$ $|k) \rho_k^I$, $(t) - \mu \rho_k^I(t)$ The DBMF SIS model

If we assume the network to be uncorrelated: $P(k'|k) =$

then
$$
\frac{d\rho_k^I(t)}{dt} = \beta k [1 - \rho_k^I(t)] \Theta - \mu \rho_k^I
$$

where
$$
\Theta = \sum_{k'} \frac{k' P(k')}{\langle k \rangle} \rho_{k'}^I(t)
$$
 prob. of find

$k'P(k')$ $\langle k \rangle$

 $\frac{1}{k}(t)$

nding an infected node following a randomly chosen edge

Early stage approximation: ρ_k^I $\frac{1}{k}(t) \ll 1$

$\frac{d\Theta}{dt}$ dt $=$ $\left(\frac{\beta}{\beta}\right)$ μ $\langle k^2 \rangle$ $\left(\frac{\kappa}{k}\right) - 1$ $\left(\theta\right)$

which implies that $Θ$ will grow only if:

Epidemic threshold

Solution

The DBMF threshold $>$ $\frac{\langle k \rangle}{\sqrt{10}}$ $\langle k^2 \rangle$

.

 \triangleright In an infinite scale-free network, with $P(k) \sim k^{-\gamma}$, and $2 \leq \gamma \leq 3$, $\langle k^2 \rangle \rightarrow \infty$ which implies that **the epidemic threshold vanishes**

• There is a finite prevalence for any value of the spreading parameters.

In the case of a **homogeneous network** with a regular (Poisson) degree distribution:

- $\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$
	- $\langle k^2 \rangle / \langle k \rangle \simeq \langle k \rangle$

The epidemic threshold then becomes:

which is finite and it does only depend on the average connectivity of the network.

 β

 μ

Homogeneous networks

In the case of complex networks, we can consider three different immunization strategies:

- uniform immunization
- proportional immunization
- targeted immunization

Immunization

In the case of uniform immunization, individuals are randomly chosen to be **vaccinated** with a density of immune nodes g. This corresponds to an effective rescaling of the spreading rate:

The threshold is affected in a uniform way: β

-
-

 \rightarrow

$$
\beta(1-g)
$$

 $\frac{\beta}{\mu}(1-g) > \frac{\langle k \rangle}{\langle k^2 \rangle}$ $\langle k^2 \rangle$

Uniform immunization

In infinite scale-free network, with $P(k) \sim k^{-\gamma}$, and $2 \le \gamma \le 3$, $\langle k^2 \rangle \to \infty$ which implies that the uniform immunization is not effective unless we immunize all the network: $q = 1$

 $\frac{\beta}{\mu}(1-g) > \frac{\langle k \rangle}{\langle k^2 \rangle}$ Uniform immunization

- We can find a better solution through a **proportional immunization**.
- Let us define the fraction of immune individuals with connectivity k: q_k If we impose the condition:

 $d\rho^I_k$

dt

 $\frac{1}{k}(t)$

 $\tilde{}$

 $=$ β

 $\tilde{}$

The system equation becomes:

Proportional immunization

 $\beta \equiv \beta k(1-g_k) = const.$

 $[1 - \rho_k^I(t)] \Theta - \mu \rho_k^I(t)$

In the case of early stage approximation and low density of infectious individuals, we

recover an epidemic threshold:

 $\beta k(1 -$

which defines a threshold on density of immunized individuals:

 g_k

$$
> 1 - \frac{\mu}{\beta k}
$$

for every class of degree k, to stop the epidemic.

Proportional immunization

$$
g_k)-\mu>0
$$

This way we introduce a cut-off in the degree distribution.

We need to immunize a fraction of nodes g such that:

In the case of the BA network, it is possible that

The fraction of nodes to immunize is exponentially small with. β

-
-
-

$$
\left\langle k \right\rangle_g
$$

 β

 μ

The line to show that:

\n
$$
g_c \simeq e^{-\frac{2\mu}{m\beta}}
$$

Targeted immunization

Optimum approach: immunize a fraction of all nodes with the largest degree.

How do we find the hubs?

- ‣ Targeted immunisation is very hard to achieve in practice, the full network structure is not known
- We need a strategy to find hubs based on a **local knowledge** of the network
- In scale-free networks, this can be done efficiently with the **acquaintance** immunisation (Cohen et al. Phys. Rev. Lett. 2003)
- Instead of immunizing nodes at random, we pick random nodes and for each we immunise one of their neighbours at random.

How do we find the hubs?

immunise one of their neighbours at random.

‣ My neighbours are more probably hubs than myself! This is also known as the friendship paradox

Instead of immunizing nodes at random, we pick random nodes and for each we

$$
=\frac{\langle k^2\rangle}{\langle k\rangle}
$$

Real network epidemiology

-
- Age-structured population
- Estimation of real contact matrices
- Mobility
- Lots of numerical simulations (no nice analytical solutions!)

• More sophisticate compartmental models (incubation period, hospitalization)

Real network epidemiology

Age-structured models

- •Compartments are structured into n age classes
-

•Mij represents the average contact rate between individuals of age i and j

Contact matrices

- Contact matrices can be estimated in different ways
- Through **empirical surveys,** which are more accurate but require significant resources (Mossong et al. 2008).
- By the creation of **synthetic populations** (Fumanelli et al. 2012).

PLOS COMPUTATIONAL BIOLOGY

DE OPEN ACCESS PEER-REVIEWED

RESEARCH ARTICLE

Inferring the Structure of Social Contacts from Demographic Data in the Analysis of Infectious Diseases Spread

Laura Fumanelli o, Marco Ajelli, Piero Manfredi, Alessandro Vespignani, Stefano Merler

Published: September 13, 2012 • https://doi.org/10.1371/journal.pcbi.1002673

Synthetic populations

Synthetic populations

Using big data and computational modeling to fight infectious diseases

Global Epidemic and Mobility project https://www.youtube.com/watch?v=YstB9VWDUqE

COVID-19 Research

 \rightarrow

 \bullet

UNITED STATES SCENARIO PROJECTIONS

- · High immune escape
- . No vaccine recommendation

SCENARIO C

- Low immune escape
- · Annual vaccine recommended for 65+ & immunocompromised

SCENARIO D

- · High immune escape
- · Annual vaccine recommended for 65+ & immunocompromised

SCENARIO E

- · Low immune escape
- · Annual vaccine recommended for all eligible groups

SCENARIOF

- · High immune escape
- · Annual vaccine recommended for all eligible groups

https://www.gleamproject.org/covid19-scenario-projections

Sources

- ‣ Pastor-Satorras et al. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015)
- ‣ Pastor-Satorras, and Vespignani. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 14 (2000)
- ‣ Barrat, Barthelemy, Vespignani. Dynamical processes on complex networks. Cambridge University Press

Dynamical Processes on Complex Networks

Alain Barrat, Marc Barthélemy, Alessandro Vespignani

Introd **Instructor: Michele Star**