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® Degree-based solution of SIS model on SF networks

® Real-world network epidemiology



Modeling epidemics

Modeling Epidemic process (dynamics):

. Branching process

S| model

SIR model

SIS model

Modeling underlying network substrate (static)

. Mean-field mixing (fully connected network)

. Homogeneous networks (ER networks)

* Heterogeneous networks (SF networks)



Modeling underlying network
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Modeling underlying networks
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Realism

4. Closed setting

Spatial scales

City Country Continent

Spatial scale

Planet



- Homogeneous mixing is not always
realistic

- Contacts are not equal and not
constant across groups.

- Real contact networks display high
neterogenelties




Degree-based solution of the
SIS model on scale-free networks




Epidemics on networks

« \We consider a network of N nodes where each node can be In an
epidemic state, S, | or R

- We define the density of nodes in a given state, as:

S (t) [(t)

R(t)
p°>(t) =——,p'(t) = Y

—=, p*(t) =N



Degree-based mean field

Nodes with the same degree k are considered as statistically equivalent

Fraction of nodes in each compartment: py,, &« = S,1, R

These variables are not independent: Y.pr, = 1
a

Fraction of individuals in compartment @ at time tto p*(t) = Y.P(k)py (t)
k



Degree-based mean field

- The network is considered in a mean-field perspective (annealed
network approximation).
- The adjacency matrix is completely “destroyed”. Only the degree
and the two-vertex correlations of each node are preserved.
- [ he agjacency matrix Is replaced by Its ensemble average:
Zij _ kiP(kilk;)

NP (k;)



The DBMF SIS model

Sum over
all possible k’ Number of nodes recovering

d I
%@ = Bk [1 — pk(t) ISPk k)pi (t) — 1ok (t)

NN

Prob of finding a node Probability that a node of degree k
with degree k, susceptible is connected to an infected node of degree K’

Transmission
happens over K links



The DBMF SIS model

d I
P — Bkl - (OIS PG 0Pk (6) — 1ok (0

k'P(kh
(k)

f we assume the network to be uncorrelated: P(k'|k) =

dpp(t
then <A = BI[1 — pf ()]0 — up} (1)

k'P(k") | L . .
pk' (t) prob. of finding an infected node following a randomly chosen edge

where © = ),
kl (k)



Solution

Early stage approximation: ,0,{C (t) <1

2
then @ = (éﬂ — ) ©
dat u (k)

which implies that ® will grow only if:

Epidemic
threshold




The DBMF threshold
6 (k)

> In an infinite scale-free network, with P(k) ~ k™Y, and 2 <y < 3,

(k*) = oo which implies that the epidemic threshold vanishes

> There is a finite prevalence for any value of the spreading parameters.



Homogeneous networks

In the case of a homogeneous network with a regular (Poisson) degree distribution:
(k*) = (k)* + (k)
(k*)/(k) = (k)

The epidemic threshold then becomes:

g1

_2_
u (k)

which is finite and it does only depend on the average connectivity of the network.



Immunization

In the case of complex networks, we can consider three different
immunization strategies:

® uniform iImmunization

® proportional Immunization

® targeted iImmunization



Uniform immunization

INn the case of uniform iImmunization, individuals are randomly chosen to be
vaccinated with a density of iIimmune nodes g.

This corresponds to an effective rescaling of the spreading rate;:

p - p(1-g)

The threshold Is affected in a uniform way:



Uniform immunization

v (k)
179> 4y

In infinite scale-free network, with P(k) ~ k™Y, and2 <y < 3, (k%) »

which implies that the uniform immunization is not effective unless we

immunize all the network: g = 1



Proportional immunization

We can find a better solution through a proportional immunization.

et us define the fraction of immune individuals with connectivity K: g

f we Impose the condition:

;35 fk(1 — gi) = const.

The system eqguation becomes:

o
P _ A1 - ple)10 — upl




Proportional immunization

INn the case of early stage approximation and low density of infectious individuals, we

recover an epidemic threshold:

pk(l—gx) —pn>0

which defines a threshold on density of iImmunized individuals:

gk>1_£

pk

for every class of degree Kk, to stop the epidemic.



Targeted immunization

Optimum approach: immunize a fraction of all nodes with the largest degree.
This way we introduce a cut-off in the degree distribution.

We need to iImmunize a fraction of nodes g such that:

B _ (kg

U <k2>g

_ZK
In the case of the BA network, it is possible to show that: g, = e mfy

The fraction of nodes to immunize is exponentially small with. 5



How do we find the hubs?

Targeted immunisation Is very hard to achieve in practice, the full network
structure Is not known

We need a strategy to find hubs based on a local knowledge of the network

In scale-free networks, this can be done efficiently with the acquaintance
immunisation (Cohen et al. Phys. Rev. Lett. 2003)

Instead of Immunizing nodes at random, we pick random nodes and for each we

immunise one of their neighbours at random.



How do we find the hubs?

> Instead of Immunizing nodes at random, we pick random nodes and for each we

immunise one of their neighbours at random.

2
e =

(k)

> My neighbours are more probably hubs than myself! This is also known as the

friendship paradox



Real network epidemiology



Real network epidemiology

More sophisticate compartmental models (incubation period, hospitalization)
Age-structured population

Estimation of real contact matrices

Mobility

Lots of numerical simulations (no nice analytical solutions!)



Age-structured models

INFECTION TRANSMISSION MESOSCOPIC DESCRIPTION
MODELING - - = S
7 70 o =Cc> §
Si= = 51 BMy S, T EE
J S B = |
£ = = R g = B
11=Zj=|ﬁMijN_JjSz_VIi g’zz —
10
R; =1, ol_

- Compartments are structured into n age classes

* Mij represents the average contact rate between individuals of age i and |



Contact matrices

. Contact matrices can be estimated in different ways

- Through empirical surveys, which are more accurate but require significant
resources (Mossong et al. 2008).

- By the creation of synthetic populations (Fumanelli et al. 2012).

PLOS

&3 OPEN ACCESS p; PEER-REVIEWED

RESEARCH ARTICLE

Inferring the Structure of Social Contacts from Demographic
Data in the Analysis of Infectious Diseases Spread

Laura Fumanelli [&], Marco Ajelli, Piero Manfredi, Alessandro Vespignani, Stefano Merler

Published: September 13, 2012 « https://doi.org/10.1371/journal.pcbi.1002673
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"

Using big data and computational

modeling to fight infectious diseases

[ COVID-19 Research ]

Global Epidemic and Mobility project
https:// www.youtube.com/watch?v=YstBOVWDUQqE
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UNITED STATES SCENARIO PROJECTIONS https://www.gleamproject.org/covid19-scenario-projections
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