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Modeling epidemics
•  Modeling Epidemic process (dynamics): 

•  Branching process

•  SI model

•  SIR model

•  SIS model

•  Modeling underlying network substrate (static)

•  Mean-field mixing (fully connected network)

•  Homogeneous networks (ER networks)

• Heterogeneous networks (SF networks)
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‣ Homogeneous mixing is not always 
realistic

‣ Contacts are not equal and not 
constant across groups.

‣ Real contact networks display high 
heterogeneities

Epidemics on networks



Degree-based solution of the
SIS model on scale-free networks



• We consider a network of N nodes where each node can be in an 
epidemic state, S, I or R

• We define the density of nodes in a given state, as: 

𝜌! 𝑡 =
𝑆 𝑡
𝑁

, 𝜌" 𝑡 =
𝐼 𝑡
𝑁

, 𝜌# 𝑡 =
𝑅 𝑡
𝑁

Epidemics on networks



‣ Nodes with the same degree 𝑘 are considered as statistically equivalent

‣ Fraction of nodes in each compartment: 𝜌!", 𝛼 = 𝑆, 𝐼, 𝑅

‣ These variables are not independent: ∑
"
𝜌!" = 1

‣ Fraction of individuals in compartment 𝛼 at time t to 𝜌"(𝑡) = ∑
!
𝑃(𝑘)𝜌!"(𝑡)

Degree-based mean field



‣ The network is considered in a mean-field perspective (annealed 

network approximation). 

‣ The adjacency matrix is completely “destroyed”. Only the degree 
and the two-vertex correlations of each node are preserved. 

‣ The adjacency matrix is replaced by its ensemble average:

Degree-based mean field

𝐴$% =
𝑘%𝑃(𝑘$|𝑘%)
𝑁𝑃(𝑘$)



𝑑𝜌!" (𝑡)
𝑑𝑡

= β𝑘 [1 − 𝜌!" (𝑡)]∑
!!
𝑃(𝑘#|𝑘)𝜌!!

" (𝑡) − 𝜇𝜌!" (𝑡)

Probability that a node of degree k 
is connected to an infected node of degree k’Transmission

happens over k links

The DBMF SIS model

Prob of finding a node
with degree k, susceptible

Sum over 
all possible k’ Number of nodes recovering



𝑑𝜌!" (𝑡)
𝑑𝑡 = β𝑘[1 − 𝜌!" (𝑡)]∑

!!
𝑃(𝑘#|𝑘)𝜌!!

" (𝑡) − 𝜇𝜌!" (𝑡)

If we assume the network to be uncorrelated: 𝑃(𝑘!|𝑘) = "!#("!)
⟨"⟩

then
#$!

" (&)
#&

= β𝑘[1 − 𝜌!( (𝑡)]Θ − 𝜇𝜌!( (𝑡)

where  Θ = ∑
"!

"!#("!)
⟨"⟩

𝜌"!
( (𝑡) prob. of finding an infected node following a randomly chosen edge

The DBMF SIS model



Early stage approximation: 𝜌!" (𝑡) ≪ 1

then          #)
#&
= β

*
⟨!#⟩
⟨!⟩

− 1 Θ

which implies that Θ will grow only if: 

Epidemic 
threshold
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‣ In an infinite scale-free network, with 𝑃(𝑘) ∼ 𝑘#$, and 2 ≤ 𝛾 ≤ 3,  

⟨𝑘%⟩ → ∞ which implies that the epidemic threshold vanishes

. 
‣ There is a finite prevalence for any value of the spreading parameters.

The DBMF threshold
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In the case of a homogeneous network with a regular (Poisson) degree distribution: 

⟨𝑘!⟩ = ⟨𝑘⟩! + ⟨𝑘⟩

⟨𝑘!⟩/⟨𝑘⟩ ≃ ⟨𝑘⟩
The epidemic threshold then becomes:

which is finite and it does only depend on the average connectivity of the network.

β
𝜇 ≳

1
⟨𝑘⟩

Homogeneous networks



In the case of complex networks, we can consider three different 
immunization strategies:
• uniform immunization
• proportional immunization
• targeted immunization

Immunization



In the case of uniform immunization, individuals are randomly chosen to be 

vaccinated with a density of immune nodes g.
This corresponds to an effective rescaling of the spreading rate:

β → β(1 − 𝑔)

The threshold is affected in a uniform way: 
β
𝜇 (1 − 𝑔) >

⟨𝑘⟩
⟨𝑘!⟩

Uniform immunization



β
𝜇
(1 − 𝑔) >

⟨𝑘⟩
⟨𝑘!⟩

In infinite scale-free network, with 𝑃(𝑘) ∼ 𝑘#$, and 2 ≤ 𝛾 ≤ 3,  ⟨𝑘%⟩ → ∞
which implies that the uniform immunization is not effective unless we 

immunize all the network: 𝑔 = 1

Uniform immunization



We can find a better solution through a proportional immunization.

Let us define the fraction of immune individuals with connectivity k: 𝑔!
If we impose the condition:

β
˜
≡ β𝑘(1 − 𝑔!) = 𝑐𝑜𝑛𝑠𝑡.

The system equation becomes:

𝑑𝜌!" (𝑡)
𝑑𝑡

= β
˜
[1 − 𝜌!" (𝑡)]Θ − 𝜇𝜌!" (𝑡)

Proportional immunization



In the case of early stage approximation and low density of infectious individuals, we 
recover an epidemic threshold:

β 𝑘(1 − 𝑔!) − 𝜇 > 0
which defines a threshold on density of immunized individuals:

𝑔! > 1 −
𝜇
β𝑘

for every class of degree k, to stop the epidemic.

Proportional immunization



Optimum approach: immunize a fraction of all nodes with the largest degree.
This way we introduce a cut-off in the degree distribution.
We need to immunize a fraction of nodes g such that:

β
𝜇
<
⟨𝑘⟩'
⟨𝑘%⟩'

In the case of the BA network, it is possible to show that: 𝑔( ≃ 𝑒
# !"
#β

The fraction of nodes to immunize is exponentially small with. β

Targeted immunization



How do we find the hubs?
‣ Targeted immunisation is very hard to achieve in practice, the full network 

structure is not known
‣ We need a strategy to find hubs based on a local knowledge of the network
‣ In scale-free networks, this can be done efficiently with the acquaintance 

immunisation (Cohen et al. Phys. Rev. Lett. 2003)
‣ Instead of immunizing nodes at random, we pick random nodes and for each we 

immunise one of their neighbours at random.



How do we find the hubs?
‣ Instead of immunizing nodes at random, we pick random nodes and for each we 

immunise one of their neighbours at random.

‣ My neighbours are more probably hubs than myself! This is also known as the 
friendship paradox

𝑘))𝐮𝐧𝐜 =
⟨𝑘%⟩
⟨𝑘⟩



Real network epidemiology



• More sophisticate compartmental models (incubation period, hospitalization)
• Age-structured population
• Estimation of real contact matrices
• Mobility
• Lots of numerical simulations (no nice analytical solutions!)

Real network epidemiology



Age-structured models

•Compartments are structured into n age classes

•Mij represents the average contact rate between individuals of age i and j



Contact matrices

• Contact matrices can be estimated in different ways

• Through empirical surveys, which are more accurate but require significant 
resources (Mossong et al. 2008).

• By the creation of synthetic populations (Fumanelli et al. 2012).



Synthetic populations



Synthetic populations



Global Epidemic and Mobility project
https://www.youtube.com/watch?v=YstB9VWDUqE



Global Epidemic and Mobility project
https://www.youtube.com/watch?v=YstB9VWDUqE



https://www.gleamproject.org/covid19-scenario-projections
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Thank you!
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