Finding Communities

Social Networks Analysis and Graph Algorithms
Prof. Carlos Castillo - https://chato.cl/teach

Sources

- A. L. Barabási (2016). Network Science - Chapter 09
- D. Easly and J. Kleinberg (2010). Networks, Crowds, and Markets - Chapter 03
- F. Menczer, S. Fortunato, C. A. Davis (2020). A First Course in Network Science - Chapter 06
- URLs cited in the footer of slides

Example with clear community structure

Characterizing one community

Communities are connected and dense

Given a community C

Internal degree $k^{i n t}(C)$ considers only nodes inside the community

External degree $\boldsymbol{k}^{\text {ext }}(C)$ considers only nodes outside the community

$$
k_{i}=k_{i}^{\mathrm{int}}(C)+k_{i}^{\mathrm{ext}}(C)
$$

Strong community

A community C is strong if every node \boldsymbol{i} within the community satisfies:

$$
k_{i}^{\text {int }}(C)>k_{i}^{\text {ext }}(C)
$$

- Is the community of green nodes (dark green and light green) a strong community?
- What is the difference between dark green and light green nodes?

Weak community

A community C is weak if on

 aggregate nodes satisfy:$$
\sum_{i \in C} k_{i}^{\mathrm{int}}(C)>\sum_{i \in C} k_{i}^{\mathrm{ext}}(C)
$$

- All communities satisfying the strong property satisfy the weak one

Exercise

Is community A strong, weak, both?
Is community B strong, weak, both?
A community C is strong if, for all nodes i within the community:

$$
k_{i}^{\mathrm{int}}(C)>k_{i}^{\mathrm{ext}}(C)
$$

A community C is weak if:

$$
\sum_{i \in C} k_{i}^{\mathrm{int}}(C)>\sum_{i \in C} k_{i}^{\mathrm{ext}}(C)
$$

Finding two communities:
 network bisection

A graph that is easy to bisect

Graph bisection: finding a minimal "cut"

Simple exercise

Cut size under bisection

- What is the size of the white-red cut?
- If node 9 goes to the red component, what is the size of the white-red cut?

Finding multiple communities: a divisive method

Hierarchical graph partitioning

Until there are edges in the graph
Find an edge e that bridges two communities
Remove edge e

The Girvan-Newman algorithm

- Repeat:
- Compute edge betweenness
- Remove edge with larger betweenness

b.

c.

d.

Example: Karate Club

Quantifying multiple communities: modularity

Measuring a partition in a graph

- Modularity (or one of its variants) is a popular method to determine how good a partition is on a graph
- It compares the observed number of internal links in each partition, against the expected number of internal links if those internal links had been placed at random

Modularity of a partition

$$
Q=\frac{1}{L} \sum_{C}\left(L_{C}-\frac{k_{C}^{2}}{4 L}\right)
$$

- $L=$ number of links in the network
- $L_{C}=$ number of internal links in community C
- $k_{C}=$ sum of degree of nodes in C

Modularity of a partition (cont.)

$$
Q=\frac{1}{L} \sum_{C}\left(L_{C}-\frac{k_{C}^{2}}{4 L}\right) \longrightarrow \begin{aligned}
& \text { Expression in parenthesis } \\
& \text { is the difference between } \\
& \text { observed and expected } \\
& \text { internal links in } \\
& \text { community } C
\end{aligned}
$$

- $L=$ number of links in the network
- $L_{C}=$ number of internal links in community C
- $k_{C}=$ sum of degree of nodes in C
- $k^{2}{ }_{c} / 4 L=$ expected number of internal links in community C

Where does $\mathrm{k}_{\mathrm{c}}{ }^{2} / 4 \mathrm{~L}$ comes from?

- A link "stub" is a connection between a link and a node
- There are $2 L$ stubs in a network
- There are as many stubs as the sum of the degree of nodes

Modularity formula explained
 $Q=\frac{1}{L} \sum_{C}\left(L_{C}-\frac{k_{C}^{2}}{4 L}\right)$

- There are L_{C} internal links in C
- Total number of stubs in nodes in C is k_{C}
- Total number of stubs in the network is $2 L$
- Probability of chosing two stubs in C: $\left(k_{c} / 2 L\right)^{2}=k_{c}{ }^{2} / 4 L^{2}$
- The expected number of links joining two stubs in C is $L\left(k_{C}{ }^{2} / 4 L^{2}\right)=$ $k_{c}{ }^{2} / 4 \mathrm{~L}$
- The observed number is L_{c}
- Q has a range: $Q \in[-1,+1]$
a.

c. SINGLE COMMUNITY

b. SUBOPTIMAL PARTITION

d. NEGATIVE MODULARITY

http://networksciencebook.com/chapter/9\#modularity

$$
Q=\frac{1}{L} \sum_{C}\left(L_{C}-\frac{k_{C}^{2}}{4 L}\right)
$$

Exercise

- What is the modularity of the partition $\{0,1,2\},\{3,4,5\}$?

- What is the modularity of the partition $\{0,1,2,3\},\{4,5\}$?

$$
Q=\frac{1}{L} \sum_{C}\left(L_{C}-\frac{k_{C}^{2}}{4 L}\right)
$$

Pin board: https://upfbarcelona.padlet.org/chato/lak2lnp9m3jc1naj

Summary

Things to remember

- Strong and weak community
- The concept of "cut" in graph bisection
- Girvan-Newman's algorithm
- Modularity

Practice on your own

- Check the modularity computations in the example on the slide marked $\boldsymbol{*}$: (a) optimal partitioning into two communities, (b) suboptimal partitioning into two communities, (c) all the nodes in a single community, (d) one community per node
- You can check your answers with networkx.algorithms.community.modularity

