
Spectral Graph Embedding

Introduction to Network Science
Instructor: Michele Starnini — https://github.com/chatox/networks-science-course

https://github.com/chatox/networks-science-course
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●Application: Embedding a graph 
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Graph Laplacian
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Degree matrix

3

2

1

4

5

6



6/

Laplacian matrix
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Because A is symmetric, and we have 
only changed the diagonal, L is symmetric.
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Laplacian matrix L = D - A
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The constant vector is an eigenvector of L
The constant vector x=[1,1,...,1]T is an eigenvector of 
the Laplacian, and has eigenvalue 0

Does it need to be this specific graph? Why?
Does it need to be the vector [1, 1, …, 1]? Why?
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If the graph is disconnected

●If the graph is disconnected into two components, the 
same argument as for the adjacency matrix applies, 
and

●The multiplicity of eigenvalue 0 is equal to the 
number of connected components
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Let’s compute this quantity. 
Is it: 1) a matrix, 2) a vector, 3) a number?
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Prove this!

Assume that E only contains each edge in one direction
Think of this quantity as the “stress” produced by the assignment of node labels x

Prove that
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Proof
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Proof (detail)

c

b

a

Example

Node u appears in this sum ku times

The degree of node u is the number of times 
it is one of the ends of an edge in E
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1) All the eigenvalues of the Laplacian
are non-negative

●If v is an eigenvector of L of eigenvalue λ:

●This means all eigenvalues λ are non-negative
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2) Zero is always an eigenvalue of the Laplacian
with eigenvector = the constant vector

●If x is the eigenvector of eigenvalue 0, Lx = 0

●Then

From this, we deduct that xi = xj for any pair i, j
even if i and j are not directly connected by an edge. Why?
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●If x is the eigenvector of eigenvalue 0, Lx = 0
●Then

●Hence, for any pair of nodes (i,j) connected by an edge, xi = xj

●Given the graph is connected, there is a path between any two nodes ⇒
xi = xj = xk … for any pair of nodes (i,j), even the ones not connected by an 
edge, xi = xj

●Hence x is a constant vector

The eigenvector x of λ=0 is the constant vector
if the graph is connected
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In summary, the
Laplacian matrix L = D - A

●Is symmetric, eigenvectors are orthogonal

●Has N eigenvalues that are non-negative

●0 is always one eigenvalue

●The multiplicity of eigenvalue 0 equals the number of 
connected components of the graph



18/

The second smallest eigenvalue
of the Laplacian
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xTLx and graph cuts

●Suppose c(S, S') is a cut of graph G

●Set

0

0
1

1

1
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Rayleigh quotient

●For symmetric matrices, the second smallest 
eigenvalue is

●If x is an eigenvector,                 is its eigenvalue

https://en.wikipedia.org/wiki/Rayleigh_quotient 

https://en.wikipedia.org/wiki/Rayleigh_quotient


21/

Second eigenvector

●Orthogonal to the first one:

●Normal:
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If the graph is connected 
but almost partitioned 
into two component, 

the optimal x should have values 
similar to each other in each partition

0

Second eigenvector

Nodes should be placed at 
both sides of 0 because
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Second eigenvalue and eigenvector

●The second eigenvalue tells us how well the graph can be 
partitioned into two:

●The smaller, the more disconnected the components 

● Its eigenvector tells HOW to partition the graph into two: 

● Eigenvector components assign each node to a community 
(positive/negative)
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Example Graph 1
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Example Graph 1 (second eigenvalue of L)
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Example Graph 1, communities
S’ S
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Example Graph 2
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Example Graph 2, communities
S’ S
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Example Graph 3
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Example Graph 3, projected (where to cut?)
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A graph with two communities in      

https://www.youtube.com/watch?v=jpTjj5PmcMM 

Ordered from smaller to larger value

Second eigenvector

https://www.youtube.com/watch?v=jpTjj5PmcMM


32/https://www.youtube.com/watch?v=jpTjj5PmcMM 
Second eigenvector

Ordered from smaller to larger value

A graph with four communities in    
Note the hierarchical community structure

https://www.youtube.com/watch?v=jpTjj5PmcMM
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Application: graph drawing
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Smallest eigenvalues and eigenvectors

●Eigenvectors corresponding to the smallest eigenvalues 
minimize distances among neighbors!

●You can use these eigenvectors as the nodes coordinates 

● The eigenvector of the first eigenvalue, equal to zero, is the 
constant vector: not useful for embedding
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A graph with four communities in     

Second eigenvector Third eigenvector

Value in second eigenvectorValue in third eigenvector

https://www.youtube.com/watch?v=jpTjj5PmcMM 

https://www.youtube.com/watch?v=jpTjj5PmcMM
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The graph from the initial exercise

a
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Input nodes and edges

Spectral embedding

value in second eigenvector

a=e

d=f
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Exercise: spectral projection
●Write the Laplacian

●Get the second and third eigenvector

(e.g., “online eigenvector calculator”)

●Obtain projection

a

b

c

Link to spreadsheet: https://upfbarcelona.padlet.org/chato/shyq9m6f2g2dh1bw 

f

e

d

https://upfbarcelona.padlet.org/chato/shyq9m6f2g2dh1bw
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Answer: spectral projection
a

b

c f

e

d
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Answer: spectral projection (Python)
import networkx as nx

G  = nx.from_edgelist([('a', 'b'), ('b', 'c'), 
('c', 'd'), ('d', 'e'), ('e', 'f'), ('f', 'a')])

nx.draw_spectral(G, with_labels=True, 
font_size=30, node_size=1500, node_color='#ccc')

a

b

c f

e

d
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A barbell graph in R2 (code)

B = nx.barbell_graph(10,2)

plt.figure(figsize=(6,6))
nx.draw_networkx(B)
_ = plt.show()

plt.figure(figsize=(6,6))
nx.draw_spectral(B)
_ = plt.show()

Graph Laplacian
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Dodecahedral graph in 3D

g = nx.dodecahedral_graph()
pos = nx.spectral_layout(g, dim=3)
network_plot_3D_alt(g, 60, pos)

https://www.idtools.com.au/3d-network-graphs-python-mplot3d-toolkit/  

https://www.idtools.com.au/3d-network-graphs-python-mplot3d-toolkit/
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Application: spectral clustering
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Generating data
from sklearn.datasets import

make_blobs

N = 1000

x, _ = make_blobs(
n_samples=N,
centers=3,
cluster_std=1.2)

plt.figure(figsize=(8,8))

plt.scatter(x[:,0], x[:,1])

plt.show()
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Connect nodes to k=5 nearest neighbors
from sklearn.neighbors

import NearestNeighbors

nbrs = NearestNeighbors(
n_neighbors=6,         # includes self
algorithm='ball_tree')
.fit(x)

distances, neighbors =
nbrs.kneighbors(x)

G = nx.Graph()

for neighbor_list in neighbors:

source_node = neighbor_list[0]

for target_index in range(1,
len(neighbor_list)):

target_node = neighbor_list[target_index]

G.add_edge(source_node, target_node)
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Perform spectral embedding
nx.draw_spectral(G, with_labels=True)
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Perform spectral embedding
nx.draw_spectral(G, with_labels=True)
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Summary
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Things to remember

●Graph Laplacian

●Laplacian and graph components

●Spectral graph embedding
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Sources

●J. Leskovec (2016). Defining the graph laplacian [video] 
https://www.youtube.com/watch?v=siCPjpUtE0A&t=2s
●E. Terzi (2013). Graph cuts — The part on spectral graph partitioning
●D. A. Spielman (2009): The Laplacian
●CS168: The Modern Algorithmic Toolbox
●Lectures #11: Spectral Graph Theory, I
●URLs cited in the footer of slides

https://www.youtube.com/watch?v=AR7iFxM-NkA
http://cs-people.bu.edu/evimaria/cs565-13/cuts.pdf
http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf
http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf
http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf
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Exercises for this topic

●Mining of Massive Datasets (2014) by Leskovec et al.

–Exercises 10.4.6


