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Degree matrix
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3 0 0 0 0 O
0 2 0 0 0 O
0O 0 3 0 0 0
0O 0 0 3 0 0
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Laplacian matrix

Because A is symmetric, and we have
only changed the diagonal, L is symmetric.
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Laplacian matrix L=D - A
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The constant vector is an eigenvector of L

The constant vector x=[1,1,...,1]" is an eigenvector of
the Laplacian, and has eigenvalue 0
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If the graph is disconnected

If the graph is disconnected into two components, the
same argument as for the adjacency matrix applies,

and
M =N =0

.The multiplicity of eigenvalue O is equal to the
number of connected components
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Let’s compute this quantity.
Is it: 1) a matrix, 2) a vector, 3) a number?

! Lo
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Prove this!
Provethat 77, — N ier(®i— z;)2

Lij = Dij — Aiy

if i = j Aﬁ_{1 if (4,§) € E
1] T

otherwise 0 otherwise

Assume that E only contains each edge in one direction
Think of this quantity as the “stress” produced by the assignment of node labels x
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Proof (detail)

(i,7)eE

Node u appears in this sum ku times

The degree of node u is the number of times
it is one of the ends of an edge in E

ku = [{(i,7) € E:i=uVj=u}|

1=1

1

k, =1
ky = 2
C k.=1

= kaazi + kbazg + kcajg

= 2?42z + 2
= (g +a3) + (25 + 22

- Y @)

(4,5)€{(a,b),(b,c)}
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1) All the eigenvalues of the Laplacian
are non-negative

f vis an eigenvector of L of eigenvalue A:

Mo =0vlLy = Z (v; —v;)* >0
(i,7) €l

.This means all eigenvalues A are non-negative
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2) Zero is always an eigenvalue of the Laplacian
with eigenvector = the constant vector

If x is the eigenvector of eigenvalue 0, Lx =0

(i,j)EE

From this, we deduct that xi; = x; for any pair j, j

even if i and j are not directly connected by an edge. Why?
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The eigenvector x of A=0 is the constant vector
if the graph is connected

If x is the eigenvector of eigenvalue O, Lx =0
Then T, _ Z (2; — ajj)z —0
(2,)€E
.Hence, for any pair of nodes (i,j) connected by an edge, xi = x;
.Given the graph is connected, there is a path between any two nodes =

Xi=Xj =Xk .. for any pair of nodes (i,j), even the ones not connected by an
edge, Xxi = x;

.Hence x is a constant vector
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In summary, the
Laplacian matrix L=D - A

.Is symmetric, eigenvectors are orthogonal
.Has N eigenvalues that are non-negative
.0 is always one eigenvalue 0 =X < 2 < ... <)y

.The multiplicity of eigenvalue 0 equals the number of
connected components of the graph
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The second smallest eigenvalue
of the Laplacian
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x'Lx and graph cuts

.Suppose ¢(S, S') is a cut of graph G

Set 1 itiesS
im0 ifies

(S, 57)] =2

ol L = Z (2 — x;)° = Z 1% = |c(S, S

(i,7)€EE (i,5)€c(S,S")
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Rayleigh quotient

.For symmetric matrices, the second smallest

eigenvalue is
5 ot Mg
Ao = min

r gl

T Max
If x is an eigenvector, T 15 its eigenvalue

https://en.wikipedia.org/wiki/Rayleigh quotient
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Second eigenvector

.Orthogonal to the firstone: .. 7=-0= ZZE’L — 0

.Normal: sz 1

;=
1

. xl L R , 5
A2 =min —— = min > = min E (z; — ;)
P T S en el 2o,
i,
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Second eigenvector
)\2 = min Z (331 — ZC]')Q

x> 1, =0A> x2=1 4
2N T er

If the graph is connected
but almost partitioned
into two component,
the optimal x should have values
similar to each other in each partition

Nodes should be placed at o | X 0 X:
odes shou p sz_o R ¢ - > /

both sides of O because

Balance to minimize 22/



Second eigenvalue and eigenvector
)\2 = min Z (332 —CCj)2

z:y o x; =0A> x?=1 (i) E
.The second eigenvalue tells us how well the graph can be
partitioned into two:
.The smaller, the more disconnected the components
. Its eigenvector tells HOW to partition the graph into two:

. Eigenvector components assign each node to a community
(positive/negative)
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Example Graph 1
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Example Graph 1 (second eigenvalue of L)
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Example Graph 1, communities

A1 =0
Ao = 0.354
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Example Graph 2

A1 =0
Ao = 0.764
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Example Graph 2, communities

A =
Ay = 0.764
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Example Graph 3
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Example Graph 3, projected (where to cut?)

A1 =0
Ao = 0.748
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A graph with two communities in R!

lojoaAusble puooag

https://www.youtube.com/watch?v=ijpT|j5PmcMM
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https://www.youtube.com/watch?v=jpTjj5PmcMM

A graph with four communities iR!

Note the hierarchical community structure

https://www.youtube.com/watch?v=jpT|j5PmcMM

JojoaAuabla puooasg

Ordered from smaller to larger value
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Application: graph drawing
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Smallest eigenvalues and eigenvectors
)\2 — min Z (332 —CCj)2

. L — 2 __
x:y x;=0AY x;=1 (i) CE
.Eigenvectors corresponding to the smallest eigenvalues
minimize distances among neighbors!

.You can use these eigenvectors as the nodes coordinates

. The eigenvector of the first eigenvalue, equal to zero, is the
constant vector: not useful for embedding

34/



A graph with four communities [R?

https://www.youtube.com/watch?v=jpTjj5SPmcMM
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The graph from the initial exercise
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Exercise: spectral projection

-Write the Laplacian
.Get the second and third eigenvector
(e.g., “online eigenvector calculator”)

.Obtain projection

Link to spreadsheet: https://upfbarcelona.padlet.org/chato/shyg9m6f2g2dhlbw |



https://upfbarcelona.padlet.org/chato/shyq9m6f2g2dh1bw
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Answer: spectral projection (Python)

import networkx as nx

e

G = nx.from_edgelist([('a', 'b'"), ('b', 'c"),
(‘c’, 'd"), ('d", "e’), (e’, FY), ('f', "a')])

nx.draw_spectral(G, with_labels=True,
font_size=30, node_size=1500, node color="#ccc')
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A barbell graph in R? (code)

B

nx.barbell graph(10,2)

plt.figure(figsize=(6,6))
nx.draw_networkx(B)
= plt.show()

plt.figure(figsize=(6,6))
nx.draw_spectral(B)
_ = plt.show()

Graph Laplacian
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Dodecahedral graph in 3D

g = nx.dodecahedral_graph()
pos = nx.spectral_layout(g, dim=3)
network_plot_3D_alt(g, 60, pos) . =S

https://www.idtools.com.au/3d-network-graphs-python-mplot3d-toolkit/
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https://www.idtools.com.au/3d-network-graphs-python-mplot3d-toolkit/

Application: spectral clustering
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Generating data

from sklearn.datasets import

make _blobs 21
N = 1000 0-
X, _ = make_blobs( N

n_samples=N,

centers=3, ]

cluster_std=1.2)

plt.figure(figsize=(8,8))
plt.scatter(x[:,0], x[:,1]) -10 ;

plt.show() .
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Connect nodes to k=5

from sklearn.neighbors
import NearestNeighbors

nbrs = NearestNeighbors(
n_neighbors=6,
algorithm="ball_tree"')
Fit(x)

# includes self

distances, neighbors =
nbrs.kneighbors(x)

G = nx.Graph()
for neighbor_list in neighbors:
source_node = neighbor_list[0]

for target_index in range(1,
len%neighbor_list)):

target_node = neighbor_list[target_index]

G.add_edge(source_node, target node)

nearest neighbors




Perform spectral embedding

nx.draw_spectral(G, with_labels=True)
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Perform spectral embedding

nx.draw_spectral(G, with_labels=True)
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Summary
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Things to remember

.Graph Laplacian
.Laplacian and graph components

.Spectral graph embedding
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Sources

J. Leskovec (2016). Defining the graph laplacian [video]
https://www.youtube.com/watch?v=siCPjpUtEOA&t=2s

.E. Terzi (2013). Graph cuts — The part on spectral graph partitioning
.D. A. Spielman (2009): The Laplacian

.CS168: The Modern Algorithmic Toolbox

.Lectures #11: Spectral Graph Theory, |

-URLs cited in the footer of slides
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https://www.youtube.com/watch?v=AR7iFxM-NkA
http://cs-people.bu.edu/evimaria/cs565-13/cuts.pdf
http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf
http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf
http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf

Exercises for this topic

.Mining of Massive Datasets (2014) by Leskovec et al.
-Exercises 10.4.6
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