Spectral Graph Embedding

Introduction to Network Science

Instructor: Michele Starnini — https://github.com/chatox/networks-science

Contents

●Graph Laplacian ●Application: Embedding a graph

Graph Laplacian

Laplacian matrix $L = D - A$

The constant vector is an eigenvector of L

The constant vector $x=[1,1,...,1]^T$ is an eigenvector of the Laplacian, and has eigenvalue *0*

$$
Lx = \begin{bmatrix} 3 & -1 & -1 & 0 & -1 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 0 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}
$$

Does it need to be this specific graph? Why? Does it need to be the vector [1, 1, …, 1]? Why?

If the graph is disconnected

If the graph is disconnected into two components, the same argument as for the adjacency matrix applies, and

$$
\lambda_1=\lambda_2=0
$$

. The multiplicity of eigenvalue 0 is equal to the number of connected components

Let's compute this quantity. Is it: 1) a matrix, 2) a vector, 3) a number?

Prove this!

Prove that
$$
\mathbf{x}^T L x = \sum_{(i,j) \in E} (x_i - x_j)^2
$$

 $\mathbf{\tau}$

 $\overline{}$

$$
L_{ij} = D_{ij} - A_{ij}
$$

$$
D_{ij} = \begin{cases} k_i & \text{if } i = j \\ 0 & \text{otherwise} \end{cases} A_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}
$$

Assume that E only contains each edge in one direction Think of this quantity as the "stress" produced by the assignment of node labels x

Proof

$$
x^{T} L x = \sum_{i=1}^{n} \sum_{j=1}^{n} L_{ij} x_{i} x_{j}
$$

=
$$
\sum_{i=1}^{n} \sum_{j=1}^{n} (D_{ij} - A_{ij}) x_{i} x_{j}
$$

=
$$
\sum_{i=1}^{n} k_{i} x_{i}^{2} - \sum_{(i,j) \in E} 2 x_{i} x_{j}
$$

=
$$
\sum_{(i,j) \in E} (x_{i}^{2} + x_{j}^{2}) - \sum_{(i,j) \in E} 2 x_{i} x_{j}
$$

=
$$
\sum_{(i,j) \in E} (x_{i}^{2} + x_{j}^{2} - 2 x_{i} x_{j}) = \sum_{(i,j) \in E} (x_{i} - x_{j})^{2}
$$

Proof (detail)

$$
\sum_{i=1}^{n} k_i x_i^2 = \sum_{(i,j) \in E} (x_i^2 + x_j^2)
$$

Node *u* appears in this sum *ku* times

The degree of node *u* is the number of times it is one of the ends of an edge in *E*

$$
k_u = |\{(i, j) \in E : i = u \lor j = u\}|
$$

Example $E = \{(a, b), (b, c)\}\$ a $k_a=1$ b $k_b=2$ $k_c=1$ c $\sum k_i x_i^2 = k_a x_a^2 + k_b x_b^2 + k_c x_c^2$ $i=1$ $= x_a^2 + 2x_b^2 + x_c^2$ $= (x_a^2 + x_b^2) + (x_b^2 + x_c^2)$ $\sum (x_i^2 + x_i^2)$

 $(i,j) \in \{(a,b), (b,c)\}\$

1) All the eigenvalues of the Laplacian are non-negative

 λ if *v* is an eigenvector of *L* of eigenvalue λ :

$$
\lambda v^T v = v^T L v = \sum_{(i,j)\in E} (v_i - v_j)^2 \ge 0
$$

•This means all eigenvalues *λ* are non-negative

2) Zero is always an eigenvalue of the Laplacian with eigenvector = the constant vector

If *x* is the eigenvector of eigenvalue 0, $Lx = 0$

Then
$$
x^T L x = \sum_{(i,j) \in E} (x_i - x_j)^2 = 0
$$

From this, we deduct that *xi = xj* for any pair *i, j* even if *i* and *j* are not directly connected by an edge. Why?

The eigenvector *x* of *λ=0* is the constant vector if the graph is connected

.If x is the eigenvector of eigenvalue 0, $Lx = 0$

$$
x^T L x = \sum_{(i,j) \in E} (x_i - x_j)^2 = 0
$$

. Hence, for any pair of nodes (i, j) connected by an edge, $x_i = x_j$

•Given the graph is connected, there is a path between any two nodes \Rightarrow

xi = xj = xk … for **any** pair of nodes *(i,j),* **even the ones not connected by an edge**, *xi = xj*

●Hence *x* is a constant vector

In summary, the Laplacian matrix $L = D - A$

Is symmetric, eigenvectors are orthogonal

- **Has** *N* eigenvalues that are non-negative
- **.0** is always one eigenvalue $0 = \lambda_1 \leq \lambda_2 \leq ... \leq \lambda_N$

●The multiplicity of eigenvalue *0* equals the number of connected components of the graph

The second smallest eigenvalue of the Laplacian

x^TLx and graph cuts

●Suppose *c(S, S')* is a cut of graph G

Set
$$
x_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{if } i \in S' \end{cases}
$$

 $|c(S, S')| = 2$

$$
x^{T}Lx = \sum_{(i,j)\in E} (x_i - x_j)^2 = \sum_{(i,j)\in c(S,S')} 1^2 = |c(S,S')|
$$

[Rayleigh quotient](https://en.wikipedia.org/wiki/Rayleigh_quotient)

•For symmetric matrices, the second smalles eigenvalue is $T -$

$$
\lambda_2 = \min_x \frac{x^1 \, Mx}{x^T x}
$$

If *x* is an eigenvector, $\overline{x^T x}$ is its eigenvalue

 $x^T M x$

https://en.wikipedia.org/wiki/Rayleigh_quotient

Second eigenvector

●Orthogonal to the first one:

●Normal:

$$
\sum_i x_i^2 = 1
$$

$$
x \cdot \vec{1} = 0 \Rightarrow \sum_{i} x_i = 0
$$

$$
\lambda_2 = \min_{x} \frac{x^T L x}{x^T x} = \min_{x : \sum x_i = 0} \frac{x^T L x}{\sum x_i^2} = \min_{x : \sum x_i = 0} \sum_{\sum x_i^2 = 1} \sum_{(i,j) \in E} (x_i - x_j)^2
$$

Second eigenvector

$$
\lambda_2 = \min_{x:\sum x_i = 0 \land \sum x_i^2 = 1} \sum_{(i,j) \in E} (x_i - x_j)^2
$$

If the graph is connected but almost partitioned into two component, the optimal *x* should have values similar to each other in each partition

Nodes should be placed at $\sum x_i = 0$ both sides of 0 because

Second eigenvalue and eigenvector $\lambda_2 = \min_{x: \sum x_i = 0 \land \sum x_i^2 = 1} \sum_{(i,j) \in E} (x_i - x_j)^2$

- The second eigenvalue tells us how well the graph can be partitioned into two:
- . The smaller, the more disconnected the components
- Its eigenvector tells HOW to partition the graph into two:
- Eigenvector components assign each node to a community (positive/negative)

Example Graph 1

$$
L = \begin{bmatrix} 4 & -1 & -1 & -1 & 0 & 0 & 0 & -1 \\ -1 & 3 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & 3 & -1 \\ -1 & 0 & 0 & 0 & -1 & -1 & -1 & 4 \end{bmatrix}
$$

Example Graph 1 (second eigenvalue of L)

$$
\begin{aligned}\n\lambda_1 &= 0\\ \n\lambda_2 &= 0.354\n\end{aligned}
$$

$$
L = \begin{bmatrix} 4 & -1 & -1 & -1 & 0 & 0 & 0 & -1 \\ -1 & 3 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & 3 & -1 \\ -1 & 0 & 0 & 0 & -1 & -1 & -1 & 4 \end{bmatrix} \qquad v_2 = \begin{bmatrix} 0.247 \\ 0.383 \\ 0.383 \\ -0.383 \\ -0.383 \\ -0.383 \\ -0.383 \end{bmatrix}
$$

25/

Example Graph 1, communities

Example Graph 2

 $\lambda_1 = 0$
 $\lambda_2 = 0.764$

$$
v_2 = \begin{bmatrix} 0.263 \\ 0.425 \\ 0.425 \\ 0.263 \\ -0.263 \\ -0.425 \\ -0.425 \\ -0.263 \end{bmatrix}
$$

27/

Example Graph 2, communities

29/

30/

A graph with two communities

https://www.youtube.com/watch?v=jpTjj5PmcMM

A graph with four communiti

Application: graph drawing

Smallest eigenvalues and eigenvectors $\lambda_2 = \min_{x: \sum x_i = 0 \land \sum x_i^2 = 1} \sum_{(i,j) \in E} (x_i - x_j)^2$

- Eigenvectors corresponding to the smallest eigenvalues minimize distances among neighbors!
- •You can use these eigenvectors as the nodes coordinates
- The eigenvector of the first eigenvalue, equal to zero, is the constant vector: not useful for embedding

A graph with four communiti

The graph from the initial exercise

value in second eigenvector

Spectral embedding

Input nodes and edges

Exerc[ise: spectral projection](https://upfbarcelona.padlet.org/chato/shyq9m6f2g2dh1bw)

- . Write the Laplacian
- . Get the second and third eigenvector
- (e.g., "online eigenvector calculator")
- . Obtain projection

Link to spreadsheet: https://upfbarcelona.padlet.org/chato/shyq9m6f2

Answer: spectral projection

$$
L = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ -1 & 0 & 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & 0 & -1 & 2 \end{pmatrix}
$$

Answer: spectral projection (Python)

import networkx as nx

G = nx . from edgelist($[(d', b'), (d', 'c'), (d', b'), (d', c')$ ('c', 'd'), ('d', 'e'), ('e', 'f'), ('f', 'a')])

nx.draw spectral(G, with labels=True, font size=30, node size=1500, node color='#ccc')

A barbell graph in R^2 (code)

 $B = nx.barbell_graph(10,2)$

plt.figure(figsize=(6,6)) nx.draw networkx(B) $=$ $plt.show()$

```
plt.figure(figsize=(6,6))
nx.draw_spectral(B)
 = plt.show()
```
Graph Laplacian

Dodecahedral graph in 3D

g = nx.dodecahedral_graph() pos = nx.spectral_layout(g, dim=3) network_plot_3D_alt(g, 60, pos)

Application: spectral clustering

Generating data

from sklearn.datasets import make_blobs $N = 1000$ x, _ = **make_blobs**(n samples=N, centers=3, cluster_std=1.2) plt.figure(figsize=(8,8)) $plt.scatter(x[:, 0], x[:, 1])$

plt.show()

Connect nodes to k=5 nearest neighbors

from sklearn.neighbors import NearestNeighbors

nbrs = **NearestNeighbors**(n neighbors=6, # includes self aI gorithm='ball tree') $.fit(x)$

```
distances, neighbors =
    nbrs.kneighbors(x)
```
 $G = nx.Graph()$

```
for neighbor list in neighbors:
```
source_node = $neighbor_list[0]$

```
for target_index in range(1,
    len(neighbor_list)):
```
target_node = neighbor_list[target_index] G.add edge(source node, target node)

Perform spectral embedding

nx.draw_spectral(G, with_labels=True)

45/

Perform spectral embedding

nx.draw_spectral(G, with_labels=True)

Summary

Things to remember

●Graph Laplacian

. Laplacian and graph components

●Spectral graph embedding

Sources

●**J. Leskovec (2016). Defining the graph laplacian** [video] https://www.youtube.com/watch?v=siCPjpUtE0A&t=2s

- **.E. Terzi (2013).** Graph cuts $-$ The part on spectral graph
- ●D. A. Spielman (2009): The Laplacian
- .CS168: The Modern Algorithmic Toolbox
- ●Lectures #11: Spectral Graph Theory, I
- ●URLs cited in the footer of slides

Exercises for this topic

●Mining of Massive Datasets (2014) by Leskovec et al. –Exercises 10.4.6