Other Graph Evolution Models

Social Networks Analysis and Graph Algorithms
Prof. Carlos Castillo - https://chato.cl/teach

Actual network growth is complex

A snapshot of the Autodesk organizational hierarchy was taken each day between May 2007 and June 2011, a span of 1498 days.

Each day the entire hierarchy of the company is constructed as a tree with each employee represented by a circle, and a line connecting each employee with his or her manager.

Larger circles represent managers with more employees working under them. The tree is then laid out using a force-directed layout algorithm.

From day to day, there are three types of changes that are possible:

- Employees join the company
- Employees leave the company
- Employees change managers

https://www.youtube.com/watch?v=mkJ-Uy5dt5g

Other graph evolution models

- Uniform random attachment
- Sub-linear and super-linear preferential attachment
- Good-get-richer
- Aging effects
- Link selection
- Copy model
- No preference and no growth

Sources

- A. L. Barabási (2016). Network Science Chapter 05 and Chapter 06

Uniform Random Attachment

Growth in an ER network

- Two assumptions in ER networks:
- There are N nodes that pre-exist
- Nodes connect at random
- Let's challenge the first assumption

Uniform Attachment

- Network starts with m fully-connected nodes
- Time starts at $t_{0}=m$
- At every time step we add 1 node
- This node will have m outlinks

Expected degree over time

- Probability of obtaining one link: m / t
- Decreases over time

$$
m<i<t
$$

- Expected degree of node born at

$$
m+\frac{m}{i}+\frac{m}{i+1}+\frac{m}{i+2}+\cdots+\frac{m}{t} \approx m\left(1+\log \left(\frac{t}{i}\right)\right)
$$

Tail of degree distribution

- How many nodes of degree larger than K are there at time t ? (Computation in "Advanced materials" at the end of these slides)

$$
e^{-\frac{K-m}{m}}
$$

- Decreases exponentially with K : it's vanishingly rare to find high-degree nodes

Sub-linear and super-linear preferential attachment

Sub-linear and super-linear preferential attachment

- The model we have studied so far has linear preferential attachment because

$$
\frac{a}{d t} k_{i} \propto k_{i}
$$

- We could imagine cases where

$$
\frac{d}{d t} k_{i} \propto k_{i}^{\alpha}
$$

for $\alpha>1$ or $\alpha<1$
What do you think should happen in each case?

The degree of the largest hub $\mathrm{k}_{\text {max }}$

SUBLINEAR

$$
\begin{aligned}
& \rightarrow
\end{aligned}
$$

i

Measuring preferential attachment

Measuring preferential attachment

- We should try to measure

$$
\Pi\left(k_{i}\right) \approx \frac{\Delta k_{i}}{\Delta t}
$$

- This can be too noisy
- Why?
- Instead we will measure

$$
\pi(k)=\sum_{k_{i}=0}^{k} \Pi\left(k_{i}\right)
$$

- If $\Pi\left(k_{i}\right)$ is constant $\pi(k) \propto k$
- If $\Pi\left(k_{i}\right) \propto k$ then $\pi(k) \propto k^{2}$

Preferential attachment

 in a citation network- We observe it follows preferential attachment (with $\alpha=1$) in this case

Aging effects

Sick Boy's unified theory of life from

Trainspotting (1996)

In English: https://www.youtube.com/watch?v=pQD-dXfHrvk
In Spanish: https://www.youtube.com/watch?v=cN_WbiuqyQU
English (bad audio) subs in Spanish: https://www.youtube.com/watch?v=4xTWD9GNRFA

Aging effects

- Models without fitness but with a negative effect of age

$$
\Pi\left(k_{i}, t-t_{i}\right) \approx k_{i}\left(t-t_{i}\right)^{-v}
$$

- Older nodes accumulate links more slowly
- Parameter v is the decay factor

Qualitatively, what would you expect if:

$$
v<0 \quad v=0 \quad v \approx 1 \quad v \gg 1
$$

Aging effects

- $v<0$ favors older nodes

$v=-10$

$$
V=0
$$

- $v=0$ is simply
preferential attachment
- $v \gg 1$ means only youngest are linked

$v=1$

$v=10$

Power-law exponent in models with aging ($\mathrm{N}=10 \mathrm{~K}, \mathrm{~m}=1$)

"Good get richer"

(incl. Bianconi-Barabási model)

"Good get richer" simulation

 (number is attractiveness)

"Good get richer"

- A "good get richer" model is one where
- Each node has an "attractiveness" (called "fitness")
η_{i}
- Preferential attachment is guided by this fitness
- The probability of

$$
\Pi_{i}=\frac{\dot{\eta_{i} k_{i}}}{\sum_{j} \eta_{j} k_{j}} \text { o node } i \text { is: }
$$

Degree dynamics

$$
\begin{aligned}
\frac{d}{d t} k_{i} & =m \frac{\eta_{i} k_{i}}{\sum_{j} \eta_{j} k_{j}} \\
k_{i}\left(t ; t_{i}, \eta_{i}\right) & =m\left(\frac{t}{t_{i}}\right)^{\beta\left(\eta_{i}\right)}
\end{aligned}
$$

- With the dynamic exponent $\beta\left(\eta_{i}\right) \propto \eta_{i}$
- Remember that in linear preferential attachment $\beta=1 / 2$ (for all nodes)

In preferential attachment (BA)

 a "younger" node cannot overtake an "older" node

In good-get-richer

(Bianconi-Barabási)

this depends on node fitness

Degree distribution

$$
p_{k} \propto \int \frac{\rho(\eta)}{\eta}\left(\frac{m}{k}\right)^{\frac{c}{\eta}+1} d \eta \quad \eta \sim \rho(\eta)
$$

- When η is constant this reduces to BA
- When η is uniformly distributed in $[0,1]$ this also yields a power law but instead of $\gamma=3$ we get $\gamma \approx 2.3$

Which distribution is more heterogeneous?

Link selection model / copy model

Other processes that generate scale-free networks

- Link-selection model — step:
- Add one new node v to the network
- Select an existing link (u, w) at random and connect v to either u or w
- Copy model — step:
- Add one new node v to the network
- Pick a random existing node u
- With probability p link to u
- With probability 1-p link to a neighbor of u

Exercise: the copy model

In the copy model, start at $t=1$ with one node, and at every step t :

- Add one new node v to the network
- Pick a random existing node u
- If u has no out-links, link to u
- If u has out-links choose one of the following:
- With probability p link to u
- With probability $1-p$ link to one of the out-neighbors of u chosen at random
- Simulate it on paper (directed graph) for 7 nodes with $p=0.5$
- Make sure you understand the model fully!
- What is $N(t)$ and $L(t)$? What is

Degree distribution in the copy model

Proven in the paper by
Kumar et al. (FOCS 2000)

$$
\gamma=\frac{2-p}{1-p} \in[2,3] \text { if } p \in[0,1 / 2]
$$

"Stochastic models for the web graph" and developed in the advanced materials.

The copy model can generate any exponent between 2 and 3 !

In the copy model, at every step t:

1) Add one new node v to the network
2) Pick a random existing node u
3) With probability p link to u
4)With probability 1-p link to a neighbor of u

- We will compute $k_{i}^{\text {in }}$ but first ...
- How many links on average gets node i at time t ? In other words, what is:

$$
\frac{d}{d t} k_{i}^{\mathrm{in}}(t)
$$

- Hint: it has a term with p and a term with $1-\mathrm{p}$
- Integrate between t_{i} and t to obtain an expression for $k_{i}\left(t_{i}\right)$
(we drop the "in" superscript just for simplicity during this exercise)
- Note that now $k_{i}\left(t_{i}\right)=0$
- Once you have a expression for $k_{i}\left(t_{i}\right)$
- Compute $\operatorname{Pr}\left(k_{i}\left(t_{i}\right)>k\right)$
- Now write the cumulative distribution function of $k_{i}\left(t_{i}\right)$
- And compute its derivative to obtain

$$
p_{k}=\operatorname{Pr}\left(k_{i}(t)=k\right)=\frac{d}{d k} \operatorname{Pr}\left(k_{i}(t) \leq k\right)
$$

- It should show exponent

$$
\gamma=\frac{2-p}{1-p}
$$

Summary

Things to remember

- Uniform attachment
- Sub-linear and super-linear preferential attachment
- Measuring preferential attachment
- "Good-get-richer" and aging effects
- The copy model

Practice on your own

- Practice creating graphs using the different models
- By hand
- Or write your own code (it's not a lot of code)

Advanced materials: expected degree under uniform random attachment

Expected degree in uniform random

attachment using a differential equation

$$
\frac{d}{d t} k_{i}(t)=\frac{m}{t}
$$

Obtain $\boldsymbol{k}_{\boldsymbol{i}}$
(1) Integrate between time i and time t
(2) Use initial condition $k_{i}(i)=m$

$$
\int \frac{1}{t}=\log t+C
$$

Degree distribution over time

is not static

Degree of node born at time $m<i<t=m\left(1+\log \binom{t}{i}\right)$

Tail of degree

distribution

$$
m\left(1+\log \left(\frac{t}{i}\right)\right)>K
$$

How many nodes of degree larger than K are there
at time t ?
The fraction is $\quad \frac{t e^{-\frac{K-m}{m}}}{t}=e^{-\frac{K-m}{m}}$

$$
\begin{aligned}
1+\log \left(\frac{t}{i}\right) & >\frac{K}{m} \\
\log \left(\frac{t}{i}\right) & >\frac{K-m}{m} \\
\frac{t}{i} & >e^{\frac{K-m}{m}}
\end{aligned}
$$

Decreases exponentially with K : it's

$$
i<t e^{-\frac{K-m}{m}}
$$

vanishingly rare to find high-degree nodes

Advanced materials:

(1) No preference (2) No growth

Remember preferential attachment

- Start with m_{0} nodes
- At every time step
- Add one new node u
- Repeat m times
- Pick a node v with probability
- Connect u to v

$$
\Pi\left(k_{v}\right)=\frac{k_{v}}{\sum_{j} k_{j}}
$$

Two simple variants

- No preference
- Nodes receiving inlinks are picked uniformly at random
- No growth
- The network starts with N nodes
- No new nodes are created

No preference model

- Write the process on paper
- Write $\Pi\left(k_{i}\right)$
- Noting that $\begin{array}{r}\frac{d}{d t} k_{i}=m \Pi\left(k_{i}\right) \quad \text { obtain } k_{i}(t) \\ \int \frac{a}{b+x}=a \log (b+x)+C\end{array}, ~=~$

No preference model (cont.)

- Compute $\operatorname{Pr}\left(k_{i}(t)>k\right)$ assuming large $\mathrm{t}, \mathrm{t}_{\mathrm{i}}$
- Use it to combute

$$
\begin{aligned}
\operatorname{Pr}\left(k_{i}(t) \leq k\right) & =1-\operatorname{Pr}\left(k_{i}(t)>k\right) \\
p_{k} & =\operatorname{Pr}\left(k_{i}(t)=k\right)
\end{aligned}
$$

- Derive to obtain

Consequences of the "no preference" model

- Degree decays exponentiallv
- No power-law
- No large hubs

No growth model

- Write the process on paper
- You will need to impose $k_{i}\left(t_{i}\right) \neq 0$ why?
- Write $\Pi\left(k_{i}\right)$
- Noting that $\frac{d}{d t} k_{i}=\Pi\left(k_{i}\right) \quad$ obtain $k_{i}(t)$

Consequences of the "no growth" model

- Degree grows linearly $k_{i}(t) \propto t$
- Degree distribution is not stationary

