Preferential Attachment

(BA Model)

Social Networks Analysis and Graph Algorithms
Prof. Carlos Castillo — https://chato.cl/teach

Contents

- The BA or preferential attachment model
- Degree distribution under the BA model
- Distance distribution under the BA model
- Clustering coefficient under the BA model

Sources

- A. L. Barabási (2016). Network Science - Chapter 05
- R. Srinivasan (2013). Complex Networks - Chapter 12
- D. Easley and J. Kleinberg (2010): Networks, Crowds, and Markets - Chapter 18
- Data-Driven Social Analytics course by Vicenç Gómez and Andreas Kaltenbrunner

Social networks grow over time

Growth of an Open Source Project: Python

We have seen what but not how, or why

- Power-law degree distributions are prevalent
- We will give a possible answer to how
- For now, we will not answer why

Preferential Attachment

Video (04:43-06:45)

by Albert-László Barabási (cont.)

https://www.youtube.com/watch?v=RfgjHoVCZwU
From "Most real-networks do not form by connecting pre-existing ..." To "... the same universal architecture."

Growth

- Suppose there are two web pages on a topic, one with many inlinks the other with few, which one am I most likely to link to?
- Which scientific papers are read?
- Which book authors sell more?
- Which actors are more sought after?

Preferential attachment simulation

https://www.youtube.com/watch?v=4GDqJVtPEGg

Exercise Slope of degree distribution
 Go to netlogoweb.org/launch and select:
 "Sample Models / Networks / Preferential Attachment"

- Execute in Netlogo Web the "Preferential Attachment" program:
- Click "setup"
- Click "go"
- Let it run to ~ 500 nodes

- Guess the slope of the degree distribution in log-log scale

Pin board: https://upfbarcelona.padlet.org/chato/y8kw9jcjlluo2p8c

The Barabási-Albert (BA) model

- Network starts with m_{0} nodes connected arbitrarily as long as their degree is ≥ 1
- At every time step we add 1 node
- This node will have $m \leq m_{0}$ outlinks
- The probability of an existing node of degree k_{i} to gain one such link is

In an ER network, $\Pi\left(k_{i}\right)=\frac{1}{N-1}$

$$
\Pi\left(k_{i}\right)=\frac{k_{i}}{\sum_{j=1}^{N-1} k_{j}}
$$

Example ($m_{0}=2 ; m=2$)

Network growth with $m=2$

https://www.youtube.com/watch?v=wocaGeNKn7Y

The Barabási-Albert (BA) model

- Network starts with m_{0} nodes connected arbitrarily as long as their degree is ≥ 1
- At every time step we add 1 node
- This node will have m outlinks ($m \leq m_{0}$)
- The probability of an existing node of degree k_{i} to gain one such link is

$$
\Pi\left(k_{i}\right)=\frac{k_{i}}{\sum_{j=1}^{N-1} k_{j}}
$$

Write the formula for $N(t)$ and $L(t)$: at $t=0$ the network has m_{0} nodes and $L(0)$ links

Summary

Things to remember

- Preferential attachment
- How to create a BA network step by step

Practice on your own

- Describe step by step in pseudocode how to create a Barabási-Albert graph with N nodes having m_{0} starting nodes and m outlinks per node.
- For your pseudocode to be valid, if at any point there is a randomized step, you must indicate what is the probability of each possible outcome

