The Friendship Paradox

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo - https://chato.cl/teach

Contents

- Sampling nodes and edges
- Average degree of friends

Sources

- A. L. Barabási (2016). Network Science - Chapter 04
- F. Menczer, S. Fortunato, C. A. Davis (2020). A First Course in Network Science - Chapter 03
- URLs cited in the footer of specific slides

'Everyone has more friends than I do'

Study finds majority of college freshmen overestimate classmates' social connections

Self-perception
(3.63 close friends, 19.57 acquaintances)

Perception of peers
(4.15 close friends, 21.69 acquaintances)

31\%
 21\%

believed other freshmen
believed they had more close friends
believed they had the same number

Preliminary

The consequences of different sampling methods

Exercise
 Consequences of sampling methods

- What is the probability of selecting Tom if we select a random node?
- What is the probability of selecting Tom if we select a random edge and then randomly one of the two
 nodes attached to it?

Sampling a random node

 VS
sampling a random friend of a random node

Average degree
of friends

- Average degree

$$
\begin{aligned}
& (1+3+3+1+4+2+2) / 7 \\
& =16 / 7 \simeq 2.29
\end{aligned}
$$

- Average degree of friends of ...
... Mary: 3
... Nancy: $(1+4+3) / 3=8 / 3$

Average degree

of friends

- Average degree

$$
(1+3+3+1+4+2+2) / 7=16 / 7 \simeq 2.29
$$

- Average degree of friends of ...

... Mary: 3
... Nancy: $(1+4+3) / 3=8 / 3$
... Tara: 3
... Bob: $(1+3+4) / 3=8 / 3$
... Tom: $(3+3+2+2) / 4=10 / 4$
... John: $(4+2) / 2=3$
... Pam: $(4+2) / 2=3$
Average degree of friends $\simeq 2.83$

The friendship paradox

- Take a random person x; what is the expected degree of this person?

lt is $<\mathrm{k}\rangle$

- Take a random person x, now pick one of x 's neighbors, let's say y; what is the expected degree of y ?

lt is not $<k>$

The friendship paradox can be useful

- Examples:
- As a marketing strategy: if u invites a friend v to buy/use a product, it is likely that v has many friends, and hence it is relevant for marketing that v buys/use the product
- As a vaccination strategy: instead of offering a vaccine to random people, ask them to name a friend, offer the vaccine to those people, who will have larger degree

Sampling bias and the friendship paradox (1'35')

https://www.youtube.com/watch?v=httLvVufAYs

Imagine you're at

a random airport on earth

- Is it more likely to be ...
a large airport or a small airport?
- If you take a random flight out of it ...
will it go to a large airport or a small airport?

An example of friendship paradox

- Pick a random airport on Earth
- Most likely it will be a small airport
- However, no matter how small it is, it will have flights to big airports
- On average those airports will have much larger degree

Exercise [B. 2016, Ex. 4.10.2]: "Friendship Paradox"

- If random variable K represents the degree of a randomly chosen node, we denoted as p_{k} the probability that a randomly chosen node has degree k
- $p_{k}=\operatorname{Pr}(K=k) \quad$ Note that for simplicity we always denote by $\langle k\rangle$ what we should have named $\langle K\rangle$
- Random variable K_{F} will represent the degree of a randomly chosen neighbor ("friend") of a randomly chosen node; we will denote by q_{k} the probability that a randomly chosen neighbor of a randomly chosen node has degree k

$$
q_{k}=\operatorname{Pr}\left(K_{F}=k\right)
$$

- The formula is: $q_{k}=C k p_{k}$ where C is a normalization factor (a) Find C (hint: sum of q_{k} must be 1)

Exercise [B. 2016, Ex. 4.10.2]: "Friendship Paradox"

Random variable K_{F} is the degree of a randomly chosen neighbor of a randomly chosen node; we denote by q_{k} the probability that a randomly chosen neighbor of a randomly chosen node has degree k

$$
q_{k}=\operatorname{Pr}\left(K_{F}=k\right)=C k p_{k}
$$

(b) Find the expectation $\left\langle K_{F}\right\rangle$

Hints: $E[X]=\sum_{x} x \cdot P(X=x) \quad E\left[X^{2}\right]=\sum_{x} x^{2} \cdot P(X=x)$

Exercise [B. 2016, Ex. 4.10.2]: "Friendship Paradox"

For the scale-free network described below:
(c) Compute $\left\langle\mathrm{K}_{\mathrm{F}}\right\rangle$: the expected number of friends of a randomly chosen neighbor of a randomly chosen node
(d) Compare with $\langle\mathrm{k}\rangle$: the expected number of friends of a randomly chosen node

$$
\begin{aligned}
N & =10000 \\
\gamma & =2.3 \\
k_{\min } & =1 \\
k_{\max } & =1000
\end{aligned}
$$

You can use this formula for the moments $\left(\langle k\rangle,\left\langle k^{2}\right\rangle,\left\langle k^{3}\right\rangle, \ldots\right)$ of the degree distribution in a scale-free network:

$$
\left\langle k^{n}\right\rangle=(\gamma-1) k_{\min }^{\gamma-1} \frac{\left(k_{\max }^{n-\gamma+1}-k_{\min }^{n-\gamma+1}\right)}{n-\gamma+1}
$$

Code

```
def degree_moment(kmin, kmax, moment, gamma):
    C = (gämma-1.0)*(kmin**(gamma-1.0))
    numerator = (kmax**(moment-gamma+1.0) - kmin**(moment-gamma+1.0))
    denominator = (moment-gamma+1.0)
    return C * numerator / denominator
```

```
kavg = degree_moment(kmin=1, kmax=1000, moment=1, gamma=2.3)
print(kavg)
```


3.787798988222529

```
ksqavg = degree_moment(kmin=1, kmax=1000, moment=2, gamma=2.3)
print(ksqavg)
```


231.94329076177414

```
print(ksqavg / kavg)
```

61.23431879119234

Summary

Summary

- Your friends have more friends than you

$$
\left\langle K_{F}\right\rangle>\langle k\rangle
$$

- This can be quite strong in scale-free networks

Practice on your own

- Draw a small graph, and sample from that graph until you're convinced $\left\langle K_{F}\right\rangle>\langle k\rangle$

