The Friendship Paradox

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo — <u>https://chato.cl/teach</u>

Contents

- Sampling nodes and edges
- Average degree of friends

Sources

- A. L. Barabási (2016). Network Science Chapter 04
- F. Menczer, S. Fortunato, C. A. Davis (2020). A First Course in Network Science – Chapter 03
- URLs cited in the footer of specific slides

'Everyone has more friends than I do'

Study finds majority of college freshmen overestimate classmates' social connections

Self-perception (3.63 close friends, 19.57 acquaintances)

Perception of peers (4.15 close friends, 21.69 acquaintances)

48%	31%	21%
believed other freshmen had more close friends	believed they had more close friends	believed they had the same number

Source: Whillans et al. 2017. Image credit: The Harvard Gazette.

Preliminary

The consequences of different sampling methods

Exercise Consequences of sampling methods

- What is the probability of selecting Tom **if we select a random node**?
- What is the probability of selecting Tom if we select a random edge and then randomly one of the two nodes attached to it?

6/21

Pin board: https://upfbarcelona.padlet.org/chato/ocpl5n14i8hrkr4i

Sampling a random node VS sampling a random friend of a random node

Average degree • Average degree of friends (1+3+3+1+4+2+2)/7 $= 16/7 \approx 2.29$

Average degree of friends of ...
... Mary: 3
... Nancy:
$$(1+4+3)/3 = 8/3$$

Average degree of friends

• Average degree

 $(1+3+3+1+4+2+2)/7 = 16/7 \simeq 2.29$

• Average degree of friends of ...

... Mary: 3

... Nancy:
$$(1+4+3)/3 = 8/3$$

... Tara: 3

... Bob:
$$(1+3+4)/3 = 8/3$$

- ... Tom: (3+3+2+2)/4 = 10/4
- ... John: (4+2)/2 = 3
- ... Pam: (4+2)/2 = 3

Average degree of friends 🕿 2.83

The friendship paradox

• Take a random person x; what is the expected degree of this person?

It is <k>

• Take a random person x, now pick one of x's neighbors, let's say y; what is the expected degree of y?

The friendship paradox can be useful

- Examples:
 - As a marketing strategy: if u invites a friend v to buy/use a product, it is likely that v has many friends, and hence it is relevant for marketing that v buys/use the product
 - As a vaccination strategy: instead of offering a vaccine to random people, ask them to name a friend, offer the vaccine to those people, who will have larger degree

Sampling bias and the friendship paradox (1'35'')

https://www.youtube.com/watch?v=httLvVufAYs

Imagine you're at a random airport on earth

• Is it more likely to be ...

a large airport or a small airport?

• If you take a random flight out of it ...

will it go to a large airport or a small airport?

An example of friendship paradox

- Pick a random airport on Earth
 - Most likely it will be a small airport
- However, no matter how small it is, it will have flights to big airports
- On average those airports will have much larger degree

Exercise [B. 2016, Ex. 4.10.2]: "Friendship Paradox"

- If random variable K represents the degree of a randomly chosen node, we denoted as p_k the probability that a randomly chosen node has degree k
 - $p_k = Pr(K=k)$ Note that for simplicity we always denote by $\langle k \rangle$ what we should have named $\langle K \rangle$
- Random variable K_F will represent the degree of a randomly chosen neighbor ("friend") of a randomly chosen node; we will denote by q_k the probability that a randomly chosen neighbor of a randomly chosen node has degree k $q_k = Pr(K_F = k)$
- The formula is: q_k = C k p_k where C is a normalization factor
 (a) Find C (hint: sum of q_k must be 1)

Exercise [B. 2016, Ex. 4.10.2]: "Friendship Paradox"

Random variable K_F is the degree of a randomly chosen neighbor of a randomly chosen node; we denote by q_k the probability that a randomly chosen neighbor of a randomly chosen node has degree k $q_k = Pr(K_F = k) = C \ k \ p_k$

(b) Find the expectation $\langle K_F \rangle$

Hints:
$$E[X] = \sum x \cdot P(X = x)$$
 $E[X^2] = \sum x^2 \cdot P(X = x)$

18/21

Exercise [B. 2016, Ex. 4.10.2]: "Friendship Paradox"

For the scale-free network described below:

(c) Compute $\langle K_F \rangle$: the expected number of friends of a randomly chosen neighbor of a randomly chosen node

(d) Compare with $\langle k \rangle$: the expected number of friends of a randomly chosen node

N = 10000 $\gamma = 2.3$ $k_{\min} = 1$ $k_{\max} = 1000$ You can use this formula for the **moments** ($\langle k \rangle$, $\langle k^2 \rangle$, $\langle k^3 \rangle$, ...) of the degree distribution in a scale-free network:

$$\langle k^n \rangle = (\gamma - 1) \, k_{\min}^{\gamma - 1} \frac{\left(k_{\max}^{n - \gamma + 1} - k_{\min}^{n - \gamma + 1}\right)}{n - \gamma + 1}$$

20/21

Code


```
def degree_moment(kmin, kmax, moment, gamma):
    C = (gamma-1.0)*(kmin**(gamma-1.0))
    numerator = (kmax**(moment-gamma+1.0) - kmin**(moment-gamma+1.0))
    denominator = (moment-gamma+1.0)
    return C * numerator / denominator
```

kavg = degree_moment(kmin=1, kmax=1000, moment=1, gamma=2.3)
print(kavg)

3.787798988222529

ksqavg = degree_moment(kmin=1, kmax=1000, moment=2, gamma=2.3)
print(ksqavg)

231.94329076177414

print(ksqavg / kavg)

61.23431879119234

Summary

Summary

• Your friends have more friends than you

 $\langle K_F \rangle > \langle k \rangle$

• This can be quite strong in scale-free networks

Practice on your own

• Draw a small graph, and sample from that graph until you're convinced $\langle K_F \rangle > \langle k \rangle$