Distances in Scale-Free Networks

Social Networks Analysis and Graph Algorithms
Prof. Carlos Castillo - https://chato.cl/teach

Contents

- Distance distribution of scale-free networks

Sources

- A. L. Barabási (2016). Network Science - Chapter 04
- URLs cited in the footer of specific slides

Consequences of having

extremely large degree nodes
(also known as "large hubs")

Air travel

- You can travel between almost all pairs of European airports directly or (most of the time) with at most one stop
- All you have to do is go to a well connected airport
- This is because there are large degree airports

In general, having "hubs" or large degree nodes reduces distances

Distance distributions:

simulation results

Scale-free networks of increasing size, $\langle\mathrm{k}\rangle=3$

Distance regimes

Anomalous regime $\gamma=2$

Ultra-small world $2<\gamma<3$

- Average distance follows $\log (\log (N))$
- Example (humans):

$$
\begin{aligned}
N & \approx 7 \times 10^{9} \\
\log N & \approx 22.66 \\
\log \log N & \approx 3.12
\end{aligned}
$$

Small world $\gamma>3$

- Average distance follows $\log (\mathrm{N})$
- Similar to ER graphs where it followed $\log (N) / \log (<k>)$

Small world $\gamma>3$ (cont.)

- In this case it is hard to distinguish this case from an ER graph
- In most real complex networks (but not all)

$$
2<\gamma<3
$$

Small world $\gamma>3$ (cont.)

- Remember

$$
k_{\max }=k_{\min } N^{\frac{1}{\gamma-1}} \quad N=\left(\frac{k_{\max }}{k_{\min }}\right)^{\gamma-1}
$$

- Observing the scale-free properties requires that

$$
\mathrm{k}_{\max } \gg \mathrm{k}_{\min } \text { e.g. } \mathrm{k}_{\max }=10 \mathrm{k}_{\min }
$$

- Then if $\gamma=5, N>10^{8}$
- There are not many such networks for which we have available data

Distance in different regimes

Scale-free network

- Depends on γ and N $p_{k} \propto k^{-\gamma}$

$$
\langle d\rangle= \begin{cases}\text { const. } & \text { if } \gamma=2 \\ \log \log \mathrm{~N} & \text { if } 2<\gamma<3 \\ \log \mathrm{~N} / \log \log \mathrm{N} & \text { if } \gamma=3 \\ \log \mathrm{~N} & \text { if } \gamma>3\end{cases}
$$

Same as in ER graphs

Scale-free regime

Random regime
(hard to distinguish from random network)

Examples

EL Wikipedia elections
LK Linux kernel mailing list threads
Bui BibSonomy u-i
Bti BibSonomy t-i
Cui CiteULike u-i
If Infectious
PL Prosper loans
Cti CiteULike t-i
Wti Twitter t-i
nen Wikinews (en)
Tar Wikipedia talk, Arabic
Wui Twitter u-i
ER Epinions
nfr Wikinews (fr)
Tfr Wikipedia talk, French
SD Slashdot
Tzh Wikipedia talk, Chinese
Tes Wikipedia talk, Spanish
Etc.

Average distance and N

Exercise: average distance

	Network	N	(k)	(d)	$\ln N / \ln (\mathrm{k})$
$\gamma>3$	Internet	192,244	6.34	6.98	6.58
$2<\gamma<3$	WWW	325,729	4.60	11.27	8.31
$\gamma>3$	Email	57,194	1.81	5.88	18.4
$\gamma>3$	Science Collaboration	23,133	8.08	5.35	4.81
$2<\gamma<3$	Actor Network	702,388	83.71	3.91	3.04
$\gamma>3$	Citation Network	449,673	10.43	11.21	5.55
$2<\gamma<3$	E. Coli Metabolism	1,039	5.58	2.98	4.04
$2<\gamma<3$	Protein Interactions	2,018	2.90	5.61	7.14

Pick 4 of these networks and compare the approximation of average distance assuming a scale-free regime ...

$$
\langle d\rangle=\log (\log (N))
$$

vs assuming a random regime ...

$$
\langle d\rangle=\frac{\log N}{\log \langle k\rangle}
$$

Pin board: https: //upfbarcelona.padlet.org/chato/tt14-average-distance-38m66yhjwvvh9q4a

Summary

Things to remember

- Distances in different regimes

Practice on your own

- Remember the regimes of a graph given γ
(It is useful to know this by heart)
- Estimate distance distributions for some graphs

