Distances in Scale-Free Networks

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo — https://chato.cl/teach

Contents

Distance distribution of scale-free networks

Sources

- A. L. Barabási (2016). Network Science Chapter 04
- URLs cited in the footer of specific slides

Consequences of having extremely large degree nodes (also known as "large hubs")

Air travel

- You can travel between almost all pairs of European airports directly or (most of the time) with at most one stop
- All you have to do is go to a well connected airport
- This is because there are large degree airports

Cardillo, A et al. (2013). Modeling the multi-layer nature of the European Air Transport Network: Resilience and passengers re-scheduling under random failures. Euro. Phys. J. Special Topics, 215(1), 23-33. [DOI]

In general, having "hubs" or large degree nodes reduces distances

Distance distributions: simulation results

Scale-free networks of increasing size, $\langle k \rangle = 3$

Distance regimes

Anomalous regime $\gamma=2$

Ultra-small world $2 < \gamma < 3$

- Average distance follows log(log(N))
- Example (humans):

$$N \approx 7 \times 10^9$$
 $\log N \approx 22.66$
 $\log \log N \approx 3.12$

Small world $\gamma > 3$

- Average distance follows log(N)
- Similar to ER graphs where it followed log(N)/log(< k>)

Small world $\gamma > 3$ (cont.)

- In this case it is hard to distinguish this case from an ER graph
- In most real complex networks (but not all)

$$2 < \gamma < 3$$

Small world $\gamma > 3$ (cont.)

Remember

$$k_{\max} = k_{\min} N^{\frac{1}{\gamma - 1}} \qquad N = \left(\frac{k_{\max}}{k_{\min}}\right)^{\gamma - 1}$$

• Observing the scale-free properties requires that $k_{max} >> k_{min}$, e.g. $k_{max} = 10 k_{min}$

- Then if $\gamma=5, N>10^8$
- There are not many such networks for which we have available data

Distance in different regimes

Depends on \(\color \) and \(\color \)

Scale-free network $p_k \propto k^{-\gamma}$

$$\langle d \rangle = \begin{cases} \mathrm{const.} & \text{if } \gamma = 2 \\ \log \log \mathrm{N} & \text{if } 2 < \gamma < 3 \\ \log \mathrm{N}/\log \log \mathrm{N} & \text{if } \gamma = 3 \\ \log \mathrm{N} & \text{if } \gamma > 3 \end{cases}$$
 Same as in ER graphs

EL

Examples

Average distance and N

Exercise: average distance

	Network	N	(k)	(d)	InN/In‹k›
$\gamma > 3$	Internet	192,244	6.34	6.98	6.58
$2 < \gamma < 3$	www	325,729	4.60	11.27	8.31
$\gamma > 3$	Email	57,194	1.81	5.88	18.4
$\gamma > 3$	Science Collaboration	23,133	8.08	5.35	4.81
$2 < \gamma < 3$	Actor Network	702,388	83.71	3.91	3.04
$\gamma > 3$	Citation Network	449,673	10.43	11.21	5.55
$2 < \gamma < 3$	E. Coli Metabolism	1,039	5.58	2.98	4.04
$2 < \gamma < 3$	Protein Interactions	2,018	2.90	5.61	7.14

Pick 4 of these networks and compare the approximation of average distance assuming a scale-free regime ...

$$\langle d \rangle = log(log(N))$$

vs assuming a random regime ...

$$\langle d \rangle = \frac{\log N}{\log \langle k \rangle}$$

Pin board: https://upfbarcelona.padlet.org/chato/tt14-average-distance-38m66yhjwvvh9q4a

Summary

Things to remember

• Distances in different regimes

Practice on your own

- Remember the regimes of a graph given γ (It is useful to know this by heart)
- Estimate distance distributions for some graphs