Scale-Free Networks

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo — <u>https://chato.cl/teach</u>

Contents

- Characteristics of scale-free networks
- Degree distribution of scale-free networks
- Distance distribution of scale-free networks

Sources

- A. L. Barabási (2016). Network Science Chapter 04
- URLs cited in the footer of specific slides

Observed degree distributions

Video (03:15-04:42) by Albert-László Barabási (cont.)

https://www.youtube.com/watch?v=RfgjHoVCZwU

From "After years ... I realized I needed to find real data ..." To "Everything is possible; they are scale-free."

Immanuel Kant in Wikipedia

https://s4n0i.github.io/schoolofathens/

Wikipedia

2017; first link only

Article	In-degree
United States	~80 K
village	~70 K
moth	~52 K
Communes of France	~37 K
species	~29 K

In-degree of k-th page with most (first) in-links

Degree distributions in Web graphs

- Web graphs have large "hubs":
 - This is, nodes with very large degree
- This does not happen in a random (ER) graph
- We have already seen the Poisson distribution is a bad approximation of the observed degree distribution

Degree distributions in a web graph [nd.edu]

Modeling degree distributions

Degree distribution in real-world networks

• Straight descending line in log-log plot

$$\log p_k \sim -\gamma \log k$$
$$p_k \sim k^{-\gamma}$$

Degree k

• Parameter γ is the exponent of the power law

A scale-free network is a network whose degree distribution follows a power law

Comparing Poisson to power law

Comparing Poisson to power law

Random vs scale-free networks

High-speed trains

Air transportation

Random vs scale-free networks (cont.)

This formalism assumes there are no nodes with degree zero

Formally (continuous approx.)

$$p_k = Ck^{-\gamma}$$

 $\boldsymbol{k}_{_{min}}$ is the smaller degree found in the network

Exercise

In the actor network, N=702,388, γ =2.12

1. How many actors do we expect to have ...

1 other co-star?https://www.wolframalpha.com/ recognizes
x*y, x/y, Zeta(x), x^(-y), etc.10 other co-stars? $p_k = \frac{k^{-\gamma}}{\zeta(\gamma)}$ 100 other co-stars? $\gamma_k = \frac{k^{-\gamma}}{\zeta(\gamma)}$

2.For how many co-stars do we still expect to have one actor that has that many co-stars?

Directed graphs

In-Degree vs Out-Degree

In TikTok or Instagram (or any online social networking site), which distribution is likely to have a larger range, that of in-degree or out-degree?

In directed graphs the exponent might be different for in-degree and out-degree

 $\mathbf{p}_k \sim k^{-\gamma}$

What kind of values of gamma make the power law "tail" look more like the Poisson "tail"?

z3/36

In directed networks ...

- Each node has two degrees: $k_{_{\rm in}}$ and $k_{_{\rm out}}$
- In general they may differ, hence

$$\mathsf{p}_{\mathsf{k}_{\mathsf{in}}} \sim \mathsf{k}^{-\mathsf{Y}_{\mathsf{in}}}$$

$$\mathsf{p}_{\mathsf{k}_{\mathsf{out}}} \sim \mathsf{k}^{-\mathsf{V}_{\mathsf{out}}}$$

• In nd1998, $\gamma_{in} \simeq 2.1$, $\gamma_{out} \simeq 2.4$

Dispersion of the degree distribution

What does it mean "scale-free"?

- A distribution has a "scale" if values are close to each other, for instance in a random network $\sigma_k = \langle k \rangle^{1/2}$
- Hence, most nodes are in the range $\langle k \rangle \pm \langle k \rangle^{1/2}$
- However in scale-free network with $\gamma < 3$

$$\sigma_k \to \infty$$

Real network examples

Example: citations to scientific papers

 $k_{\rm in} \approx 10 \pm 900$

In general, the average degree is not very informative in scalefree networks

"Fat tail", "Heavy tail", "Long tail" 28/36

There is a natural cut-off of the degree

Real network examples

Network	N	L	<u> </u>	⟨k _{in} ²⟩	⟨k _{out} ²⟩	(<i>k</i> ²)	Yin	Yout	Y
Internet	192,244	609,066	6.34	-	-	240.1	-	-	3.42*
www	325,729	1,497,134	4.60	1546.0	482.4	-	2.00	2.31	-
Power Grid	4,941	6,594	2.67	-	-	10.3	-	-	Exp.
Mobile-Phone Calls	36,595	91,826	2.51	12.0	11.7	-	4.69*	5.01*	-
Email	57,194	103,731	1.81	94.7	1163.9	-	3.43*	2.03*	-
Science Collaboration	23,133	93,437	8.08	-	-	178.2	-	-	3.35*
Actor Network	702,388	29,397,908	83.71	-	-	47,353.7	-	-	2.12*
Citation Network	449,673	4,689,479	10.43	971.5	198.8	-	3.03*	4.00*	-
E. Coli Metabolism	1,039	5,802	5.58	535.7	396.7	-	2.43*	2.90*	-
Protein Interactions	2,018	2,930	2.90	_	_	32.3	-	-	2.89*-

Summary

Things to remember

- Power law
- Formulas for degree distribution
 - Discrete formula
 - Continuous formula
- Definition of scale-free

Practice on your own

- (Somewhat) difficult, <u>try to solve it ON YOUR</u>
 <u>OWN</u>
- Imagine a connected scale-free graph with 1 million nodes and average degree 5

If we draw 100 nodes from this graph, how many will have degree 1?

Remember, if the graph is connected, $k_{min}=1$

If you cannot clear the unknown in a formula, plot it

• Solution in next slide (shown only in .odp, not .pdf)

$$\langle k \rangle = C \frac{k_{\max}^{2-\gamma} - k_{\min}^{2-\gamma}}{2-\gamma}$$

 \mathbf{O}

$$C = (\gamma - 1)k_{\min}^{\gamma - 1}$$

$$k_{\max} = k_{\min} N^{\frac{1}{\gamma - 1}}$$

$$p_k = \frac{k^{-\gamma}}{\zeta(\gamma)}$$

Additional contents (not included in exams)

Pareto's Law

 Italian economist Vilfredo Pareto in the 19th century noted 80% of money was earned by 20% of people

- More recently ...
 - 80 percent of links on the Web point to only 15 percent of pages;
 - 80 percent of citations go to only 38 percent of scientists;
 - 80 percent of links in Hollywood are to 30 percent of actors
- A debate that is still open: the wealth of the 1% and the 0.1%

Moments of degree distribution

• Moments of degree distribution

$$\langle k^n \rangle = \int_{k_{\min}}^{k_{\max}} k^n p_k dk = C \frac{k_{\max}^{n-\gamma+1} - k_{\min}^{n-\gamma+1}}{n-\gamma+1}$$

$$C = (\gamma - 1)k_{\min}^{\gamma - 1}$$

Moments of degree distribution (cont.)

$$\sigma_k^2 = \left\langle k^2 \right\rangle - \left\langle k \right\rangle^2$$

• In a scale-free network $\langle k^2 \rangle = \int_{k_{\min}}^{k_{\max}} k^2 p_k dk = C \frac{k_{\max}^{3-\gamma} - k_{\min}^{3-\gamma}}{3-\gamma}$

- This diverges as $k_{\max}
 ightarrow \infty$ if $\gamma < 3$
- Hence there is no "typical" scale

When you do not observe the scale-free property

- In general, when there is a limit to $k_{\rm max}$
- Out-degree in some social networks
- Materials/crystals

