Properties of Random Networks

Social Networks Analysis and Graph Algorithms
Prof. Carlos Castillo - https://chato.cl/teach

Contents

- Connectedness under the ER model
- Distances under the ER model
- Clustering coefficient under the ER model

Sources

- A. L. Barabási (2016). Network Science Chapter 03
- Data-Driven Social Analytics course by Vicenç Gómez and Andreas Kaltenbrunner
- URLs cited in the footer of specific slides

The "Magtension" game

- Take turns placing one magnet inside an enclosed space
- You lose if, after your play, any two magnets stick to each other

https://www.youtube.com/watch?v=PDyadRTCSOE

Connectivity in ER networks

An interesting property of ER networks

Red $=$ nodes in
largest connected
component

Exercise Giant component under ER

- Execute the "Giant Component" program in Netlogo Web
- Select num-nodes N (e.g., 100)
- Click "setup"

- Click "go"
- Write down the point at which there is an elbow in the distribution of links
- Repeat various times
- Indicate approximately where, on average, you find the "elbow"

Pin board: https://upfbarcelona.padlet.org/chato/jk9oinetdyuzecol

ER network as $<k>$ increases

- When $<\mathrm{k}>=0$: only singletons
- When $<\mathrm{k}><1$: disconnected
- When $<k \gg 1$: giant connected component
- When $<\mathrm{k}>=\mathrm{N}$ - 1 complete graph

It's obvious that to have a giant connected it is necessary that $<\mathrm{k}>=1$ Erdös and Rényi proved it is sufficient in 1959

This result holds on average, not on every execution of the model

Sub-critical regime: $\quad\langle k\rangle<1$

Critical point: $\quad\langle k\rangle=1$

Supercritical regime: $\quad\langle k\rangle>1$

Connected regime: $\langle k\rangle>\log N$

Most real networks are supercritical:

 $\langle k\rangle>1$| Network | N | L | (K | InN |
| :--- | :--- | :--- | :--- | :--- |
| Internet | 192,244 | 609,066 | 6.34 | 12.17 |
| Power Grid | 4,941 | 6,594 | 2.67 | 8.51 |
| Science Collaboration | 23,133 | 94,437 | 8.08 | 10.05 |
| Actor Network | 702,388 | $29,397,908$ | 83.71 | 13.46 |
| Protein Interactions | 2,018 | 2,930 | 2.90 | 7.61 |

Most real networks are supercritical:

 $\langle k\rangle>1$

Small-world phenomenon

a.k.a. "six degrees of separation"

Milgram's experiment in 1967

- Instructions: send to personal acquaintance most likely to know the target
- Sources: 160 people in Wichita and Omaha
- Targets: (1) a stock broker in Boston, MA and (2) a student in Sharon, MA
- Materials: short summary of study
 purpose, target photograph, name, address and information

Milgram's experiment in 1967 (results)

- 64 of 296 (22\%) of the letters reached their destination
- Average 6.5 steps, much lower than expected

Wikipedia Speedruns

- Select Wikipedia's "Random article" twice
- Go from one to the other only by clicking links; no "Ctrl-F" search allowed
- Timeout at 30 seconds
- Example: from John Cena to Doublestranded RNA viruses

https://oracleofbacon.org/

THE ORACLE OF BACON

Stormy Daniels has a Bacon number of 2.

"Small-world phenomenon"

- If you choose any two individuals on Earth, they are connected by a relatively short path of acquaintances
- Formally
- The expected distance between two randomly chosen nodes in a network grows much slower than its number of nodes

How many nodes at distance $\leq \mathrm{d}$?

In an ER graph:
$\langle k\rangle$ nodes at distance 1
$\langle k\rangle^{2}$ nodes at distance 2
$\langle k\rangle^{d}$ nodes at distance d

$$
N(d)=1+\langle k\rangle+\langle k\rangle^{2}+\cdots+\langle k\rangle^{d}=\frac{\langle k\rangle^{d+1}-1}{\langle k\rangle-1}
$$

What is the maximum distance?

- Assuming $\langle k\rangle \gg 1 \quad \mathrm{~N}\left(\mathrm{~d}_{\text {max }}\right)=\frac{\left\langle\langle \rangle^{d_{\text {max }}+1}-1\right.}{\langle k\rangle-1} \approx N$

$$
\begin{aligned}
\langle k\rangle\rangle_{\max } & \approx N \\
d_{\max } & \approx \log _{\langle k\rangle} N \\
d_{\max } & \approx \frac{\log N}{\log \langle k\rangle}
\end{aligned}
$$

Empirical average and maximum distances

Network	\mathbf{N}	\mathbf{L}	(k)	(d)	$\mathbf{d}_{\text {max }}$	InN/In \mathbf{k})
Internet	192,244	609,066	6.34	6.98	26	6.58
WWW	325,729	$1,497,134$	4.60	11.27	93	8.31
Power Grid	4,941	6,594	2.67	18.99	46	8.66
Mobile-Phone Calls	36,595	91,826	2.51	11.72	39	11.42
Email	57,194	103,731	1.81	5.88	18	18.4
Science Collaboration	23,133	93,437	8.08	5.35	15	4.81
Actor Network	702,388	$29,397,908$	83.71	3.91	14	3.04
Citation Network	449,673	$4,707,958$	10.43	11.21	42	5.55
E. Coli Metabolism	1,039	5,802	5.58	2.98	8	4.04
Protein Interactions	2,018	2,930	2.90	5.61	14	7.14

Approximation

- Given that $\mathrm{d}_{\text {max }}$ is dominated by a few long paths, while $<\mathrm{d}>$ is averaged over all paths, in general we observe that in an ER graph:

$$
\langle d\rangle \approx \frac{\log N}{\log \langle k\rangle}
$$

Simple Exercise

Find a famous actress/actor far from Kevin Bacon
Go to https://oracleofbacon.org/ and find a famous actress or actor that has a distance from Kevin Bacon larger than

$$
\langle d\rangle \approx \frac{\log N}{\log \langle k\rangle}=\frac{\log 702388}{\log 83.71} \approx 3
$$

Write the name of the actress/actor and its distance Tip: first look for some list of famous actresses/actors

Pin board: https://upfbarcelona.padlet.org/chato/rh0y9s1vngxk7klv

Clustering coefficient

or

"a friend of a friend is my friend"

Clustering coefficient C_{i} of node \mathbf{i}

- Remember
- $C_{i}=0 \Rightarrow$ neighbors of i are disconnected
- $C_{i}=1 \Rightarrow$ neighbors of i are fully connected

Links between neighbors in ER graphs

- The number of nodes that are neighbors of node i is k_{i}
- The number of distinct pairs of nodes that are neighbors of i is $k_{i}\left(k_{i}-1\right) / 2$
- The probability that any of those pairs is connected is p
- Then, the expected links L_{i} between neighbors of i are:

$$
\left\langle L_{i}\right\rangle=p \frac{k_{i}\left(k_{i}-1\right)}{2}
$$

Clustering coefficient in ER graphs

- Expected links L_{i} between
neighbors of $\mathrm{i}:\left\langle L_{i}\right\rangle=p \frac{k_{i}\left(k_{i}-1\right)}{2}$
- Clustering coefficient $C_{i}=\frac{2\left\langle L_{i}\right\rangle}{k_{i}\left(k_{i}-1\right)}=\frac{2 p \frac{k_{i}\left(k_{i}-1\right)}{2}}{k_{i}\left(k_{i}-1\right)}$

$$
=p \approx \frac{\langle k\rangle}{N}
$$

In an ER graph $C_{i}=\langle k\rangle / N$

If $\langle k\rangle$ is fixed, large networks should have smaller clustering coefficient

We should have that
$\langle C\rangle /\langle k\rangle$ follows $1 / N$

If in an ER graph
 $C_{i}=\langle k\rangle / N$

Then the clustering coefficient of a node should be independent of the degree

To re-cap ...

The ER model is a bad model of degree distribution

- Predicted

$$
p_{k}=e^{-\langle k\rangle} \frac{\langle k\rangle^{k}}{k!}
$$

- Observed

Many nodes with larger degree than predicted

The ER model is a good model of path

length

- Predicted

$$
d_{\max } \approx \frac{\log N}{\log \langle k\rangle}
$$

- Observed

$$
\langle d\rangle \approx \frac{\log N}{\log \langle k\rangle}
$$

(d)	$d_{\text {max }}$	$\ln N / \ln (k)$
6.98	26	6.58
11.27	93	8.31
18.99	46	8.66
11.72	39	11.42
5.88	18	18.4
5.35	15	4.81
3.91	14	3.04
11.21	42	5.55
2.98	8	4.04
5.61	14	7.14

The ER model is a bad model of clustering coefficient

- Predicted
$C_{i}=\langle k\rangle / N$
- Observed

Clustering coefficient decreases if degree increases

Why do we study the ER model?

- Starting point
- Simple
- Instructional
- Historically important, and gained prominence only when large datasets started to become available \Rightarrow relevant to Data Science!

Exercise [B. 2016, Ex. 3.11.1]

Consider an ER graph with $\mathrm{N}=3,000 \mathrm{p}=10^{-3}$

1) $<k>\simeq$?
2) In which regime is the network? $\langle k\rangle<1,\langle k\rangle=1,\langle k\rangle>1,\langle k\rangle>\log N$
3) Suppose we want to increase N until there is only one connected component 3.1) What is <k> as a function of p and N ?
3.2) What should N be, then? Let's call that value $N^{\text {cr }}$

- $\langle k\rangle \approx \log N$ Write the equation and solve by trial and error

4) What is <k> if the network has $N^{\text {cr }}$ nodes?
5) What is the expected distance $<\mathrm{d}>$ with N^{cr} nodes?

$$
\langle d\rangle \approx \frac{\log N}{\log \langle k\rangle}
$$

Summary

Things to remember

- The ER model
- Degree distribution in the ER model
- Distance distribution in the ER model
- Connectivity regimes in the ER model

Practice on your own

- Take an existing network
- (e.g., from the slide "Empirical average and maximum distances")
- Assume it is an ER network
- Indicate in which regime is the network
- Estimate expected distance
- Compare to actual distances, if available
- Write code to create ER networks

Additional contents

Another visualization of the emergence of a giant connected component

http://networksciencebook.com/images/ch-03/video-3-2.m4v

