Distances in Scale-Free Networks

Introduction to Network Science

Instructor: Michele Starnini — <u>https://github.com/chatox/networks-science-course</u>

Contents

Distance distribution of scale-free networks

Consequences of having extremely large degree nodes (also known as "large hubs")

Air travel

- •You can travel between almost all pairs of European airports directly or (most of the time) with at most one stop
- All you have to do is go to a well-connected airport
- •This is because there are large degree airports

Cardillo, A et al. (2013). Modeling the multi-layer nature of the European Air Transport Network: Resilience and passengers re-scheduling under random failures. Euro. Phys. J. Special Topics, 215(1), 23-33. [DOI]

In general, having "hubs" or large degree nodes reduces distances

Source: Menczer, Fortunato, Davis: <u>A First Course on Networks Science</u>. Cambridge, 2020.

Distance distributions: simulation results

Scale-free networks of increasing size, <k> = 3

Distance regimes

Ultra-small world

$$2 < \gamma < 3$$

Average distance follows: <d> ~ log(log(N))
Example (humans):

 $N \approx 7 \times 10^9$ $\log N \approx 22.66$ $\log \log N \approx 3.12$

Small world $\gamma > 3$

Average distance follows : <d>~ log(N)

•Similar to ER graphs where it followed log(N)/log(<k>)

- SF networks with $\gamma>3$ are "almost" ER!

.In most real complex networks (but not all) $2 < \gamma < 3$

Small world
$$\gamma > 3$$
 (cont.)
Remember $k_{\max} = k_{\min} N^{\frac{1}{\gamma-1}} \implies N = \left(\frac{k_{\max}}{k_{\min}}\right)^{\gamma-1}$

Observing the scale-free properties requires $k_{max} >> k_{min}$, e.g. $k_{max} = 10 k_{min}$ •Then if $\gamma = 5, N > 10^8$!!!!!

•

Not many networks for which we have available data

Scale-free regime

Random regime (hard to distinguish from random network) POTEN UN OUT WWW CMAIL ACTOR WWW WEAR. UN **Different regimes** B 2 3 γ FINITE FINITE $\gamma = 3$ (k^2) $\begin{array}{l} \gamma = 2 \\ k_{\max} \sim N \end{array}$ DIVERGES k^2 FINITE $\ln N$ $\langle d \rangle$ $\ln \ln N$ $\langle d \rangle = \begin{cases} \text{const.} & \text{if } \gamma = 2\\ \log \log N & \text{if } 2 < \gamma < 3\\ \log N / \log \log N & \text{if } \gamma = 3\\ \log N & \text{if } \gamma > 3 \end{cases}$ CRITICAL POINT $\langle d \rangle \sim \ln \ln N$ ULTRA-SMALL SMALL WORLD WORLD

Examples

http://konect.uni-koblenz.de/statistics/prefatt

EL	Wikipedia elections
LK	Linux kernel mailing list threads
Bui	BibSonomy u-i
Bti	BibSonomy t-i
Cui	CiteULike u-i
lf	Infectious
PL	Prosper loans
Cti	CiteULike t-i
Wti	Twitter t-i
nen	Wikinews (en)
Tar	Wikipedia talk, Arabic
Wui	Twitter u-i
ER	Epinions
nfr	Wikinews (fr)
Tfr	Wikipedia talk, French
SD	Slashdot
Tzh	Wikipedia talk, Chinese
Tes	Wikipedia talk, Spanish

Etc.

Average distance and N

Exercise: average distance

	Network	Ν	(k)	(d)	InN/In (k)
$\gamma > 3$	Internet	192,244	6.34	6.98	6.58
$2 < \gamma < 3$	WWW	325,729	4.60	11.27	8.31
$\gamma > 3$	Email	57,194	1.81	5.88	18.4
$\gamma > 3$	Science Collaboration	23,133	8.08	5.35	4.81
$2 < \gamma < 3$	Actor Network	702,388	83.71	3.91	3.04
$\gamma > 3$	Citation Network	449,673	10.43	11.21	5.55
$2 < \gamma < 3$	E. Coli Metabolism	1,039	5.58	2.98	4.04
$2 < \gamma < 3$	Protein Interactions	2,018	2.90	5.61	7.14

Pick 4 of these networks and compare the approximation of average distance assuming a scalefree regime ...

$$\langle d \rangle = \log(\log(N))$$

vs assuming a ER regime ..

$$d\rangle = \frac{\log N}{\log \langle k}$$

Pin board: <u>https://upfbarcelona.padlet.org/chato/tt14-average-distance-38m66yhjwvvh9q4a</u>

Summary

Things to remember

Distances in different regimes

Practice on your own

- •Remember the regimes of a graph given γ
- (It is useful to know this by heart)
- Estimate distance distributions for some graphs

Sources

- A. L. Barabási (2016). Network Science <u>Chapter 04</u>
- •URLs cited in the footer of specific slides