Scale-free Networks

Introduction to Network Science

Instructor: Michele Starnini — <u>https://github.com/chatox/networks-science-course</u>

Contents

- Characteristics of scale-free networks
- Degree distribution of scale-free networks
- Distance distribution of scale-free networks

Observed degree distributions

Video (03:15-04:42) by Albert-László Barabási (cont.)


https://www.youtube.com/watch?v=RfgjHoVCZwU

From "After years ... I realized I needed to find real data ..." To "Everything is possible; they are scale-free."

Pareto's Law

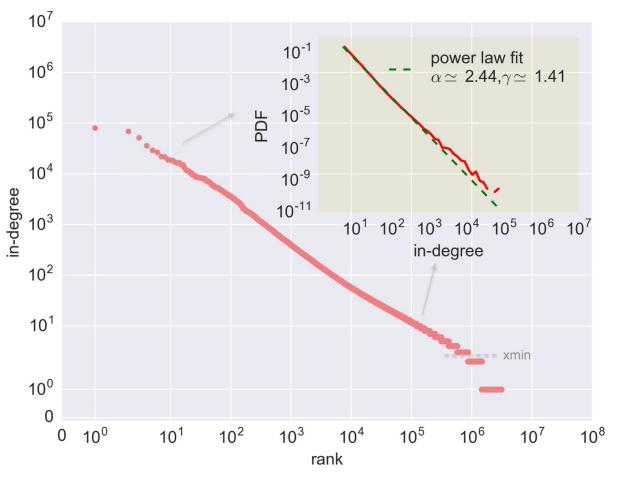
Italian economist Vilfredo Pareto in the 19th century noted 80% of money was earned by 20% of people

•More recently ...

- -80 percent of links on the Web point to only 15 percent of pages;
- -80 percent of citations go to only 38 percent of scientists;
- -80 percent of links in Hollywood are to 30 percent of actors
- •A debate that is still open: the wealth of the 1% and the 0.1%

Immanuel Kant in Wikipedia

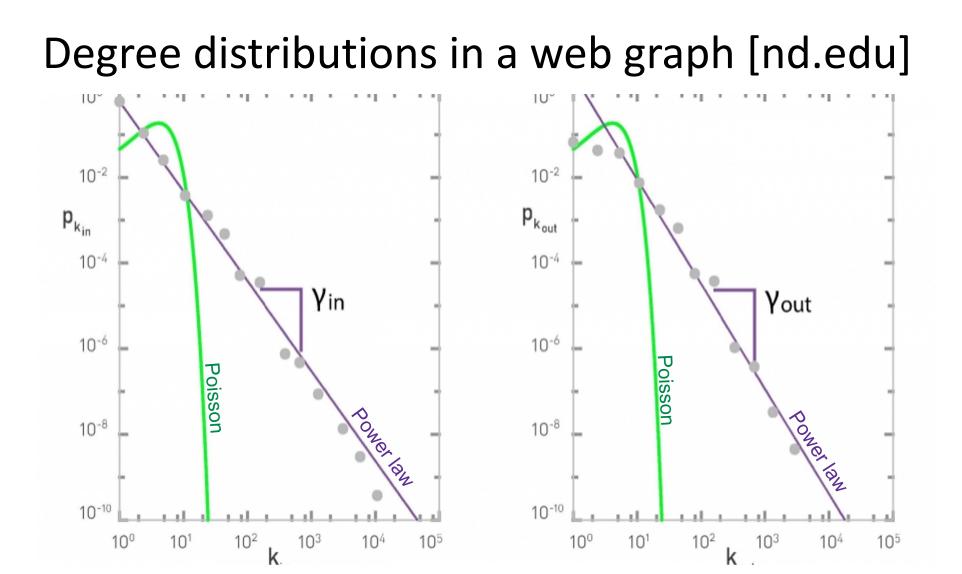
? About


https://s4n0i.github.io/schoolofathens/

Wikipedia

2017; first link only

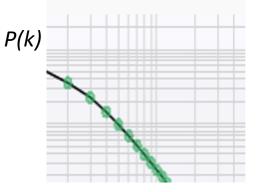
Article	In-degree
United States	~80 K
village	~70 K
moth	~52 K
Communes of France	~37 K
species	~29 K


In-degree of k-th page with most (first) in-links

Degree distributions in Web graphs

- •Web graphs have large "hubs":
- -This is, nodes with very large degree
- •This does not happen in a random (ER) graph

•We have already seen the Poisson distribution is a bad approximation of the observed degree distribution

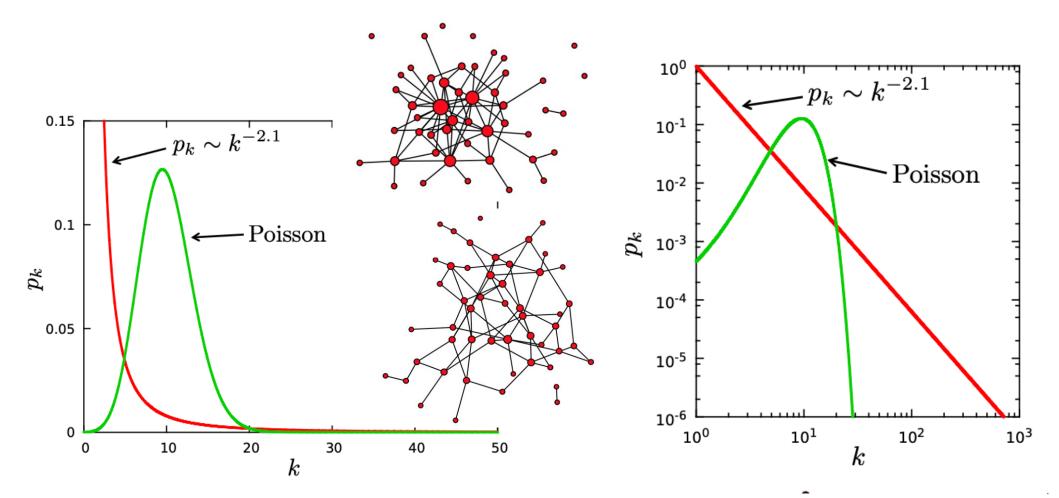


Modeling degree distributions

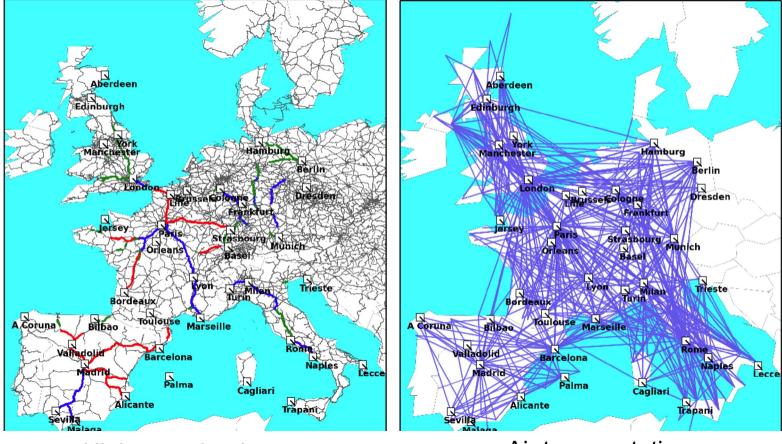
Degree distribution in real-world networks

•Straight descending line in log-log plot

$$\log p_k \sim -\gamma \log k$$
$$p_k \sim k^{-\gamma}$$

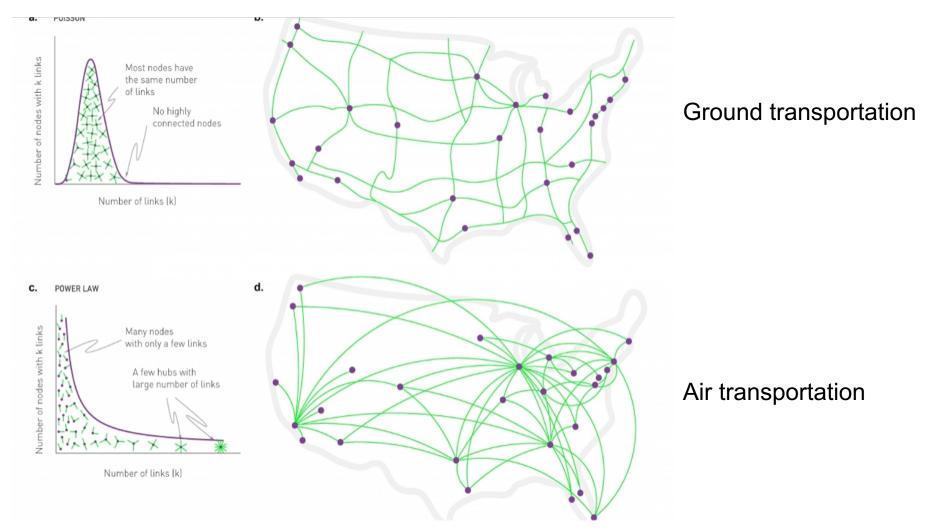


Degree k


•Parameter γ is the exponent of the power law

A scale-free network is a network whose degree distribution follows a power law

Comparing Poisson to power law


Random vs scale-free networks

High-speed trains

Air transportation

Random vs scale-free networks (cont.)

Formally (discrete)

$$\begin{split} p_k &= Ck^{-\gamma} \\ \sum_{k=1}^{\infty} p_k &= 1 \\ p_k &= \frac{k^{-\gamma}}{\zeta(\gamma)} \end{split} \qquad \qquad C = \frac{1}{\sum_{k=1}^{\infty} k^{-\gamma}} = \frac{1}{\zeta(\gamma)} \end{split}$$
 Riemann's zeta

This formalism assumes there are no nodes with degree zero

Formally (continuous approx.)

$$p_{k} = Ck^{-\gamma}$$

$$\int_{k=k_{\min}}^{\infty} p_{k} = 1$$

$$p_{k} = (\gamma - 1)k_{\min}^{\gamma - 1}k^{-\gamma}$$

$$C = \frac{1}{\int_{k=k_{\min}}^{\infty} k^{-\gamma}} = (\gamma - 1)k_{\min}^{\gamma - 1}$$

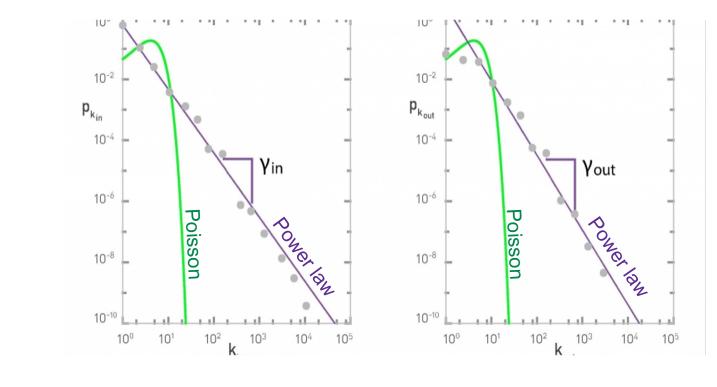
k_{min} is the smaller degree found in the network

Exercise

- In the actor network, N=702,388, ¥=2.12
- 1. How many actors do we expect to have ...
- 1 other co-star? 10 other co-stars?
 - 100 other co-stars?

recognizes x*y, x/y, Zeta(x), x^(-y), etc.

$$p_k = \frac{k^{-\gamma}}{\zeta(\gamma)} \qquad \zeta(2.12) \approx 1.5452$$


2.For how many co-stars do we still expect to have one actor that has that many co-stars?

Directed graphs

In-Degree vs Out-Degree

In TikTok or Instagram (or any online social networking site), which distribution is likely to have a larger variance, that of in-degree or out-degree?

In directed graphs the exponent might be different for in-degree and out-degree

 $\mathbf{p}_k \sim k^{-\gamma}$

What kind of values of gamma make the power law "tail" look more like the Poisson "tail"?

In directed networks ...

Each node has two degrees: k_{in} and k_{out}

In general they may differ, hence

$$P_{kin} \sim k^{-V_{in}}$$

 $P_{kout} \sim k^{-V_{out}}$

In nd1998,
$$Y_{in} \simeq 2.1$$
, $Y_{out} \simeq 2.4$

Dispersion of the degree distribution

What does it mean "scale-free"?

•A distribution has a "scale" if values are close to each other, for instance in a ER network $\sigma_k = \langle k \rangle^{1/2}$

•Hence, most nodes are in the range $\langle k \rangle \pm \langle k \rangle^{1/2}$

•However in scale-free network with $\gamma < 3$

$$\sigma_k \to \infty$$

Moments of degree distribution

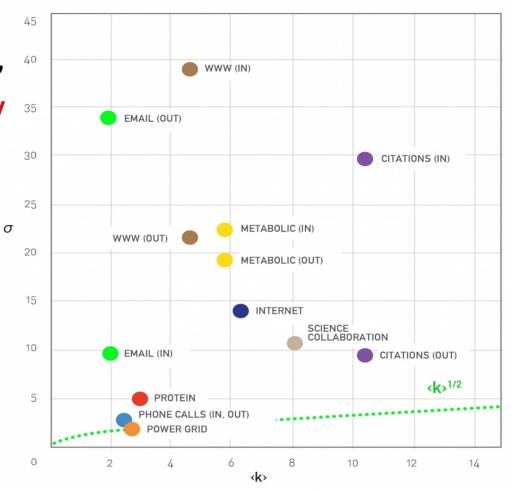
Moments of degree distribution

$$\langle k^n \rangle = \int_{k_{\min}}^{k_{\max}} k^n p_k dk = C \frac{k_{\max}^{n-\gamma+1} - k_{\min}^{n-\gamma+1}}{n-\gamma+1}$$

$$C = (\gamma - 1)k_{\min}^{\gamma - 1}$$

Variance in SF networks

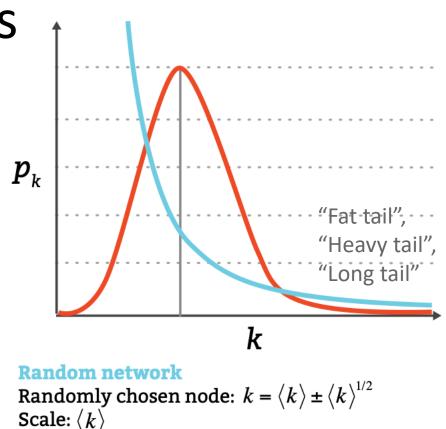
$$\sigma_k^2 = \left\langle k^2 \right\rangle - \left\langle k \right\rangle^2$$


•In a SF network
$$\langle k^2 \rangle = \int_{k_{\min}}^{k_{\max}} k^2 p_k dk = C \frac{k_{\max}^{3-\gamma} - k_{\min}^{3-\gamma}}{3-\gamma}$$

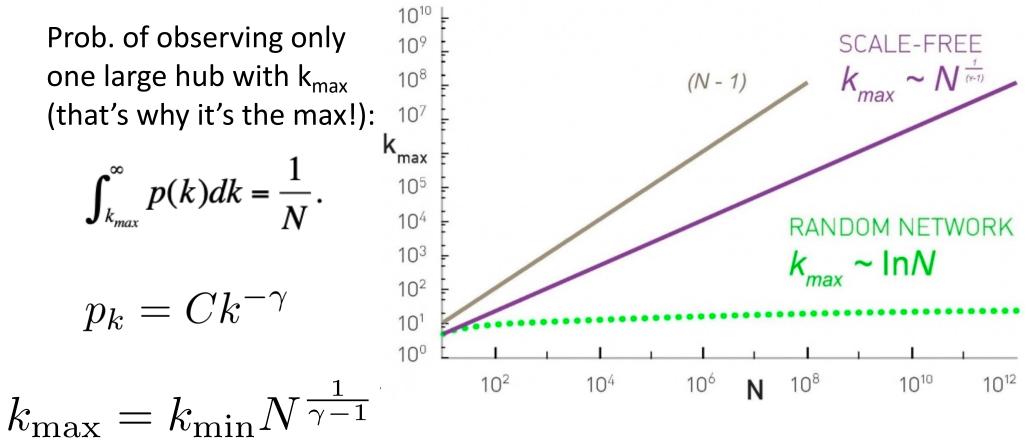
- •This diverges as $\ k_{
 m max}
 ightarrow \infty$ if $\gamma < 3$
- •Hence there is no "typical" scale

Note that the average degree <k> diverges if $\gamma < 2$

Real network are SF


Real networks are finite, 40 variance cannot be infinity 35

Citation networks

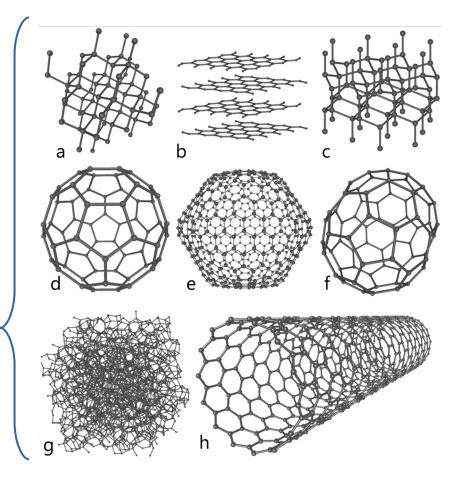

 $k_{\rm in} \approx 10 \pm 900$

In general, the average degree is not very informative in scalefree networks

Scale-free network Randomly chosen node: $k = \langle k \rangle \pm \infty$ $\langle k \rangle$ is meaningless as 'scale'

There is a natural cut-off of the degree

Real network examples


Network	N	L	(k)	$\langle k_{in}^2 \rangle$	⟨k _{out} ²⟩	(k ²)	Yin	Yout	Y
Internet	192,244	609,066	6.34	-	-	240.1	-	-	3.42*
www	325,729	1,497,134	4.60	1546.0	482.4	-	2.00	2.31	-
Power Grid	4,941	6,594	2.67	-	-	10.3	-	-	Exp.
Mobile-Phone Calls	36,595	91,826	2.51	12.0	11.7	-	4.69*	5.01*	-
Email	57,194	103,731	1.81	94.7	1163.9	-	3.43*	2.03*	-
Science Collaboration	23,133	93,437	8.08	-	-	178.2	-	-	3.35*
Actor Network	702,388	29,397,908	83.71	-	-	47,353.7	-	-	2.12*
Citation Network	449,673	4,689,479	10.43	971.5	198.8	-	3.03*	4.00*	-
E. Coli Metabolism	1,039	5,802	5.58	535.7	396.7	-	2.43*	2.90*	-
	0.010	0.000	0.00			00.0			0.00+

31/

Not all networks are SF!

- In general, when there is
 a limit to k_{max}
- Out-degree in some social networks
- Materials/crystals

Strictly speaking, these are not "complex" networks

Summary

Things to remember

- Power law
- Formulas for degree distribution
- -Discrete formula
- -Continuous formula
- Definition of scale-free

Practice on your own

.(Somewhat) difficult, try to solve it ON YOUR OWN

 Imagine a connected scale-free graph with 1 million nodes and average degree 5

If we draw 100 nodes from this graph, how many will have degree 1?

Remember, if the graph is connected, k_{min} =1

If you cannot clear the unknown in a formula, plot it

•Solution in next slide (shown only in .odp, not .pdf)

$$\langle k \rangle = C \frac{k_{\max}^{2-\gamma} - k_{\min}^{2-\gamma}}{2-\gamma}$$

$$C = (\gamma - 1)k_{\min}^{\gamma - 1}$$

$$k_{\max} = k_{\min} N^{\frac{1}{\gamma - 1}}$$

$$p_k = \frac{k^{-\gamma}}{\zeta(\gamma)}$$

Sources

•A. L. Barabási (2016). Network Science – <u>Chapter 04</u>
•URLs cited in the footer of specific slides