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Case study on centrality

Social Networks Analysis and Graph Algorithms
Prof. Carlos Castillo — https://chato.cl/teach 

https://chato.cl/teach
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A: Degree

B: Closeness

C: Betweenness

D. PageRank

HIGH

LOW
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Case study:
Noble families in Florence

in the 15th century
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Florentine families
● Noble families in Florence around 

1430
● Power struggle between two factions 

led by the Medici and the Strozzi
● The relatively newcomer Medici 

became, for a while, the wealthiest 
family in Europe … they had their 
own bank!

● Dataset collected by John Padgett 
from historical documents



5/24

Wealth and political power
● The dataset contains 116 families
● Gross wealth in Florins (1 florin ~ 3.5g of gold)

– These are all approximations assuming florins and ducats have similar value:
● Leonardo da Vinci was paid ~100 florin per year (~1 painting), until he worked with the king 

of France, who paid ~400 florin per year
● Michelangelo Buonarroti got paid ~200-450 florins per sculpture
● A palace would cost a few thousand florins

● Priorates is the cumulative number of seats in the city council along 
mulriple years
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Wealth and political power (cont.)
plt.scatter(
  families[families.Npriors > MIN_PRIORS].Gwealth,
  families[families.Npriors > MIN_PRIORS].Npriors)

families.Gwealth.corr(
  families.Npriors, method='pearson'))
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Wealth and political power (cont.)

Pearson correlation = 0.39
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Credit graph

[Image source]

https://www.npr.org/2012/01/31/145731770/in-italy-art-as-a-window-into-modern-banking
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Credit graph
● 72 nodes (families)
● 125 edges (loans)
● Loan given by one 

family to a member 
of the other

● Undirected in this 
dataset
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Credit graph in NetworkX
credits_list = pd.read_csv(INPUT_CREDIT, 
   usecols=['FamilyA', 'FamilyB'])

credits = nx.from_pandas_edgelist(credits_list, 
   "FamilyA", "FamilyB")

…

credits_components = sorted(
   nx.connected_components(credits), key=len, reverse=True)

credits_gcc = credits.subgraph(credits_components[0])
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Credit - giant connected component (70 nodes, 97%)

What can you say 
about the degree 
distribution of the 

credit graph?
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Credit - giant connected component (70 nodes, 97%)

kmedici = 21
kstrozzi = 3
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Closeness computation

c_closeness = pd.DataFrame.from_dict(
   nx.closeness_centrality(credits_gcc),
   orient='index', columns=['c_closeness'])

families = families.join(c_closeness, how='inner')
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Closeness, betweenness, eigencentrality

Closeness
● Peruzzi 0.39
● Medici 0.48
● Strozzi 0.28

Betweenness
● Peruzzi 0.11
● Medici 0.53
● Strozzi 0.03

Eigencentrality
● Peruzzi 0.30
● Medici 0.31
● Strozzi 0.07

What can you say about the correlations of this with wealth/power?



17/24

Computing and visualizing correlations

corr = families.corr()

corr
   .style.background_gradient(cmap='Reds')
   .format(precision=2)
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Correlations

Do you see the block structure in this matrix? What does it mean?
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Marriages graph

[Image source]

https://www.npr.org/2012/01/31/145731770/in-italy-art-as-a-window-into-modern-banking
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Marriages graph
● 96 nodes

(families)
● 157 edges

(marriages)
● Undirected and 

unweighted
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Marriages - giant connected component (90 nodes, 94%)
What can you say 
about the degree 
distribution of the 
marriages graph?
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Marriages - giant connected component (90 nodes, 94%)
What can you say 
about the degree 
distribution of the 
marriages graph?
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Closeness, betweenness, eigencentrality

Closeness
● Peruzzi 0.42
● Medici 0.44
● Strozzi 0.46

Betweenness
● Peruzzi 0.15
● Medici 0.26
● Strozzi 0.35

Eigencentrality
● Peruzzi 0.32
● Medici 0.27
● Strozzi 0.40

What can you say about the correlations of this with wealth/power?



27/24

Correlations

Do you see the block structure in this matrix? What does it mean?
What is a good predictor of wealth/power?
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Summary
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Things to remember
● The analysis of social networks requires defining 

suitable graphs
● There is usually a step in which one compares this 

with domain-specific metrics
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