Case study on centrality

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo — <u>https://chato.cl/teach</u>

- A: Degree
- **B:** Closeness
- C: Betweenness

D. PageRank

LOW

HIGH

Case study: Noble families in Florence in the 15th century

Florentine families

- Noble families in Florence around 1430
- Power struggle between two factions led by the Medici and the Strozzi
- The relatively newcomer Medici became, for a while, the wealthiest family in Europe ... they had their own bank!
- Dataset collected by John Padgett from historical documents

Wealth and political power

- The dataset contains 116 families
- Gross wealth in Florins (1 florin ~ 3.5g of gold)
 - These are all approximations assuming *florins* and *ducats* have similar value:
 - Leonardo da Vinci was paid ~100 florin per year (~1 painting), until he worked with the king of France, who paid ~400 florin per year
 - Michelangelo Buonarroti got paid \sim 200-450 florins per sculpture
 - A palace would cost a few thousand florins
- **Priorates** is the cumulative number of seats in the city council along mulriple years

Wealth and political power (cont.)

plt.scatter(

families[families.Npriors > MIN_PRIORS].Gwealth,
families[families.Npriors > MIN_PRIORS].Npriors)

families.Gwealth.corr(
 families.Npriors, method='pearson'))

Wealth and political power (cont.)

Credit graph

Credit graph

Guasconi

Fortini

- 72 nodes (families)
- 125 edges (loans)
- Loan given by one family to a member of the other
- Undirected in this dataset

Credit graph in NetworkX

```
credits_list = pd.read_csv(INPUT_CREDIT,
    usecols=['FamilyA', 'FamilyB'])
```

....

```
credits = nx.from_pandas_edgelist(credits_list,
    "FamilyA", "FamilyB")
```

```
credits_components = sorted(
    nx.connected_components(credits), key=len, reverse=True)
credits_gcc = credits.subgraph(credits_components[0])
```

Credit - giant connected component (70 nodes, 97%)

Credit - giant connected component (70 nodes, 97%)

Closeness computation

c_closeness = pd.DataFrame.from_dict(
 nx.closeness_centrality(credits_gcc),
 orient='index', columns=['c_closeness'])

families = families.join(c_closeness, how='inner')

Closeness, betweenness, eigencentrality

Closeness

- Peruzzi 0.39
- Medici 0.48
- Strozzi 0.28

- Betweenness
- Peruzzi 0.11
- Medici 0.53
- Strozzi 0.03

- Eigencentrality
- Peruzzi 0.30
- Medici 0.31
- Strozzi 0.07

What can you say about the correlations of this with wealth/power?

Computing and visualizing correlations

corr = families.corr()

corr

.style.background_gradient(cmap='Reds')
.format(precision=2)

Correlations

	Gwealth	Npriors	c_degree	c_closeness	c_betweenness	c_eigencentrality
Gwealth	1.00	0.39	0.42	0.21	0.40	0.34
Npriors	0.39	1.00	0.27	0.04	0.20	0.19
c_degree	0.42	0.27	1.00	0.67	0.84	0.88
c_closeness	0.21	0.04	0.67	1.00	0.59	0.79
c_betweenness	0.40	0.20	0.84	0.59	1.00	0.59
c_eigencentrality	0.34	0.19	0.88	0.79	0.59	1.00

Do you see the block structure in this matrix? What does it mean?

Marriages graph

[Image source]

Marriages graph

- 96 nodes
 (families)
- 157 edges
 (marriages)
- Undirected and unweighted

Marriages - giant connected component (90 nodes, 94%)

Pueci

Marriages - giant connected component (90 nodes, 94%)

Pueci

Closeness, betweenness, eigencentrality

Closeness

- Peruzzi 0.42
- Medici 0.44
- Strozzi 0.46

- Betweenness
- Peruzzi 0.15
- Medici 0.26

• Strozzi 0.35

- - ci 0.26 •

- Eigencentrality
- Peruzzi 0.32
- Medici 0.27
- Strozzi 0.40

What can you say about the correlations of this with wealth/power?

Correlations

	Gwealth	Npriors	m_degree	m_closeness	m_betweenness	m_eigencentrality	c_degree	c_closeness	c_betweenness	c_eigencentrality
Gwealth	1.00	0.44	0.79	0.67	0.77	0.76	0.39	0.22	0.40	0.33
Npriors	0.44	1.00	0.69	0.53	0.71	0.63	0.31	0.03	0.24	0.19
m_degree	0.79	0.69	1.00	0.77	0.95	0.93	0.48	0.30	0.45	0.42
m_closeness	0.67	0.53	0.77	1.00	0.66	0.90	0.42	0.27	0.29	0.44
m_betweenness	0.77	0.71	0.95	0.66	1.00	0.81	0.43	0.25	0.45	0.33
m_eigencentrality	0.76	0.63	0.93	0.90	0.81	1.00	0.45	0.29	0.32	0.46
c_degree	0.39	0.31	0.48	0.42	0.43	0.45	1.00	0.70	0.84	0.87
c_closeness	0.22	0.03	0.30	0.27	0.25	0.29	0.70	1.00	0.61	0.81
c_betweenness	0.40	0.24	0.45	0.29	0.45	0.32	0.84	0.61	1.00	0.57
c_eigencentrality	0.33	0.19	0.42	0.44	0.33	0.46	0.87	0.81	0.57	1.00

Do you see the block structure in this matrix? What does it mean?

What is a good predictor of wealth/power?

Summary

Things to remember

- The analysis of social networks requires defining suitable graphs
- There is usually a step in which one compares this with domain-specific metrics