Case study on centrality

Social Networks Analysis and Graph Algorithms
Prof. Carlos Castillo - https://chato.cl/teach
A: Degree
B: ClosenessC: BetweennessD. PageRank

Case study:

Noble families in Florence in the 15th century

Florentine families

- Noble families in Florence around 1430
- Power struggle between two factions led by the Medici and the Strozzi
- The relatively newcomer Medici became, for a while, the wealthiest family in Europe ... they had their own bank!
- Dataset collected by John Padgett
 from historical documents

Wealth and political power

- The dataset contains 116 families
- Gross wealth in Florins (1 florin ~ 3.5g of gold)
- These are all approximations assuming florins and ducats have similar value:
- Leonardo da Vinci was paid ~ 100 florin per year (~ 1 painting), until he worked with the king of France, who paid ~ 400 florin per year
- Michelangelo Buonarroti got paid ~200-450 florins per sculpture
- A palace would cost a few thousand florins
- Priorates is the cumulative number of seats in the city council along mulriple years

Wealth and political power (cont.)

```
plt.scatter(
    families[families.Npriors > MIN_PRIORS].Gwealth,
    families[families.Npriors > MIN_PRIORS].Npriors)
families.Gwealth.corr(
    families.Npriors, method='pearson'))
```


Wealth and political power (cont.)

Florentine families having more than 10 priorates

Credit graph

Credit graph

- 72 nodes (families)
- 125 edges (loans)
- Loan given by one family to a member of the other
- Undirected in this dataset

Credit graph in NetworkX

```
credits_list = pd.read_csv(INPUT_CREDIT,
        usecols=['FamilyA', 'FamilyB'])
credits = nx.from_pandas_edgelist(credits_list,
        "FamilyA", "FamilyB")
..
credits_components = sorted(
    nx.connected_components(credits), key=len, reverse=True)
credits_gcc = credits.subgraph(credits_components[0])
```


Credit - giant connected component (70 nodes, 97\%)

Credit - giant connected component (70 nodes, 97\%)

Closeness computation

C_closeness = pd.DataFrame.from_dict(nx.closeness_centrality (credits_gcc), orient='index', columns=['c_closeness'])
families = families.join(c_closeness, how='inner')

Closeness, betweenness, eigencentrality

Closeness

Betweenness

Eigencentrality

- Peruzzi 0.39
- Medici 0.48
- Strozzi 0.28
- Peruzzi 0.11
- Medici 0.53
- Strozzi 0.03
- Peruzzi 0.30
- Medici 0.31
- Strozzi 0.07

What can you say about the correlations of this with wealth/power?

Computing and visualizing correlations

```
corr = families.corr()
corr
    .style. background_gradient(cmap= 'Reds')
    .format (precision=2)
```


Correlations

| | Gwealth | Npriors | c_degree | c_closeness | c_betweenness | c_eigencentrality |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Gwealth | 1.00 | 0.39 | 0.42 | 0.21 | 0.40 | 0.34 |
| Npriors | 0.39 | 1.00 | 0.27 | 0.04 | 0.20 | 0.19 |
| c_degree | 0.42 | 0.27 | 1.00 | 0.67 | 0.84 | 0.88 |
| c_closeness | 0.21 | 0.04 | 0.67 | 1.00 | 0.59 | 0.79 |
| c_betweenness | 0.40 | 0.20 | 0.84 | 0.59 | 1.00 | 0.59 |
| c_eigencentrality | 0.34 | 0.19 | 0.88 | 0.79 | 0.59 | 1.00 |

Do you see the block structure in this matrix? What does it mean?

Marriages graph

Marriages graph

- 96 nodes
(families)
- 157 edges
(marriages)
- Undirected and unweighted

Dello_Scarfa

Solosmei Bartoli

Marriages - giant connected component (90 nodes, 94\%)

Marriages - giant connected component (90 nodes, 94\%)

Closeness, betweenness, eigencentrality

Closeness

Betweenness

Eigencentrality

- Peruzzi 0.42
- Medici 0.44
- Strozzi 0.46
- Peruzzi 0.15
- Medici 0.26
- Strozzi 0.35
- Peruzzi 0.32
- Medici 0.27
- Strozzi 0.40

What can you say about the correlations of this with wealth/power?

Correlations

	Gwealth	Npriors	m_degree	m_closeness	m_betweenness	m_eigencentrality	c_degree	c_closeness	c_betweenness	c_eigencentrality
Gwealth	1.00	0.44	0.79	0.67	0.77	0.76	0.39	0.22	0.40	0.33
Npriors	0.44	1.00	0.69	0.53	0.71	0.63	0.31	0.03	0.24	0.19
m_degree	0.79	0.69	1.00	0.77	0.95	0.93	0.48	0.30	0.45	0.42
m_closeness	0.67	0.53	0.77	1.00	0.66	0.90	0.42	0.27	0.29	0.44
m_betweenness	0.77	0.71	0.95	0.66	1.00	0.81	0.43	0.25	0.45	0.33
m_eigencentrality	0.76	0.63	0.93	0.90	0.81	1.00	0.45	0.29	0.32	0.46
c_degree	0.39	0.31	0.48	0.42	0.43	0.45	1.00	0.70	0.84	0.87
c_closeness	0.22	0.03	0.30	0.27	0.25	0.29	0.70	1.00	0.61	0.81
c_betweenness	0.40	0.24	0.45	0.29	0.45	0.32	0.84	0.61	1.00	0.57
c_eigencentrality	0.33	0.19	0.42	0.44	0.33	0.46	0.87	0.81	0.57	1.00

Do you see the block structure in this matrix? What does it mean? What is a good predictor of wealth/power?

Summary

Things to remember

- The analysis of social networks requires defining suitable graphs
- There is usually a step in which one compares this with domain-specific metrics

