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PageRank

Social Networks Analysis and Graph Algorithms
Prof. Carlos Castillo — https://chato.cl/teach 

https://chato.cl/teach
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Sources
● D. Easley and J. Kleinberg (2010): Networks, Crowds, 

and Markets – Chapter 14
● Fei Li's lecture on PageRank (2011)
● Evimaria Terzi's lecture on link analysis (2013)
● URLs in the footer of specific slides

https://www.cs.cornell.edu/home/kleinber/networks-book/networks-book-ch14.pdf
https://web.eecs.umich.edu/~michjc/eecs584/notes/lecture19-pagerank.ppt
http://cs-people.bu.edu/evimaria/cs565-13/link-analysis.pdf
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The origins of PageRank
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Back to the 1990s ...
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The early days of the web
● March 1989: proposal by Tim Berners-Lee at CERN
● Early 1993: NCSA Mosaic graphical browser
● Jan 1994: Yahoo! Web directory (manual)
● 1994: WebCrawler, Lycos (automated, crawlers)
● End of 1994: the web has about 10,000 sites
● 1995-1996: Altavista, Inktomi, and many others ...
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Part of a research project that started in 1995 ...
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PageRank

● Today, PageRank and its variants are probably part 
of most ranking systems in linked collections of data

● Relevance = links + content + interactions + ...

[link]

http://ilpubs.stanford.edu:8090/422/
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Simplified PageRank
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(Simplified) PageRank
● All nodes start with score 1/N

● Repeat t times:
– Divide equally and “send” its score to out-links
– Add received scores
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All nodes start with score 1/N

● Repeat t times:
● Divide equally and “send” the score 

of each node to out-links
● Add received scores

Keep intermediate values in a table
Try to arrive to equilibrium values

Exercise
Execute simplified PageRank

Spreadsheet links: https://upfbarcelona.padlet.org/chato/shyq9m6f2g2dh1bw

https://upfbarcelona.padlet.org/chato/shyq9m6f2g2dh1bw


12/33

Equilibrium values

How can you prove these are

equilibrium values? (Do it.)



14/33

(Simplified) PageRank

● kj
out is is the out-degree of page j

● c is a normalization factor to ensure
|P1| + |P2| + … + |PN| = 1

● If we initialize with 1/N for every node AND the graph 
is strongly connected, then simply use c=1
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Running simplified PageRank
on a graph

B C

A
Adjacency
matrix

Row-stochastic 
adjacency 
matrix
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Another example of Simplified PageRank

B C

A

First iteration of calculation:
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Another example of Simplified PageRank

B C

A

Second iteration:
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Another example of Simplified PageRank

Final score

B C

A

Following iterations:
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A Problem with Simplified PageRank 

A loop:

During each iteration, the loop accumulates score but 
never distributes score to other pages!
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Example of the problem ...

First iteration of calculation:

B C

A
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Example of the problem ...

B C

A

Second iteration:
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Example of the problem ...

The winner 
takes all!

B C

A

Following iterations:
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Why is PageRank also refered to as
“Eigen...” centrality
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What are we computing?

A is the transposed row-stochastic adjacency matrix

What is p?

How do you call this method to compute p?
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What are we computing?

● This will converge if A is:
– Left-stochastic (each column adds up to one)
– Irreducible (represents a strongly connected graph)
– Aperiodic (does not represent a bipartite graph)
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“Random walk” interpretation
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Markov Chain
● Discrete process over a set of states
● Next state computed from current state only (no memory of 

older states)
– Higher-order Markov chains can be defined

● Stationary distribution of Markov chain is a probability 
distribution such that p = Ap

● Intuitively, p represents “the average time spent” at each node if 
the process continues forever
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Example Markov Chain: a baby
(think of 1-hour time steps)

Crying

Eating Sleeping

0.5

0.8

0.2

0.4 0.1

0.8

0.1

0.1

0.0
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Random Walks in Graphs
● Random Surfer Model → Simplified PageRank

– The simplified model: the standing probability distribution of a 
random walk on the graph of the web. simply keeps clicking successive 
links at random

● Modified Random Surfer → PageRank
– The modified model: the “random surfer” simply keeps clicking 

successive links at random, but periodically “gets bored” and jumps to 
a random page based on a distribution R (e.g., uniform)

– This guarantees irreducibility
– Pages without out-links (dangling nodes) are a row of zeros, can be 

replaced by R, or by a row of 1/N 
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PageRank

R(i): web pages that “users” jump to when they “get bored”;
Uniform preferences => R(i) = 1/N
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An example of PageRank

B C

A

Was: 



33/33

Summary
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Things to remember
● Simplified PageRank
● PageRank
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Practice on your own
● Consider a directed graph G = (V, E) in which V = {1, 2, . . . , N }

and (i, j)  E  i  V  j  V  (j = i + 1  j = i = N )∈ ⇐⇒ ∈ ∧ ∈ ∧ ∨
– 1. Indicate the value of Simplified PageRank S(i) for each node i in the 

graph, justifying your answer.
– 2. Indicate the value of PageRank P (i) for each node i in the graph as a 

function of i and the parameter .α
● Tip: write P(1), then write P(2), then write P(3), then write P(i).
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