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Network models

-Networks of many different types have similar properties:

-Short paths

-Many triangles

-Skewed degree distributions

-Where do such properties come from?

.How do nodes connect to each other? How are triangles formed?

-We will study network models, i.e., sets of instructions to create
networks
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Why studying network models?

.Our models will be stochastic, i.e., randomized

.Running stochastic network models can let us check
if they generate networks that look like real ones

Almost invariably, the generated networks will be
similar to actual networks in some ways, but different
in other ways
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Modelling?

“All models are wrong,

Input but some are useful”
Inform
Assume a spherical cow of uniform density.

Quantify Phenomenon

* Test

® Reproduce

Output

® Forecast



Modelling

. Null models

— Preserve some properties, randomize ALL the rest

- Compare data with null hypothesis: statistical test.

— Example: homophily. Comparison with “random network”. Statistically significant?
. Realistic models

- Develop a model that “explains” some observed property

-~ Compare with data: How good is the model?

- Example: homophily. Assume some mechanisms leading to homophily.
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Modelling Cats

The best model

of a:catis acat.

ArturoRosenblaeth
and:Norbert-\Wiener.

“As the-statistician George E. P. Box wrote, “All models ‘aré wrong, ‘but
some models are useful.” What he meant by that.is that.all models are
simplifications of the universe, as they must necessarily be. As another
mathematician said, “The best model of a catis a cat.”

- The Signal and the Noise, Nate Silver
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Real networks

Generated networks
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The “Random Network”
Erdds-Rényi (ER) Model

Sounds like “ERDOSH and REGN”

Paul Erdos Alfred Rényi
(1913-1996) (1921-1970)
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https://forvo.com/word/erd%C5%91s/
https://forvo.com/word/r%C3%A9nyi_alfr%C3%A9d/

Video (01:20-02:26)
by Albert-Lasz|6 Barabasi (cont.)

https://www.youtube.com/watch?v=RfgjHoVCZwU
Until “... in a random network, the average dominates.”
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https://www.youtube.com/watch?v=RfgjHoVCZwU

Meeting people at a party

.You pick a random person

.Talk to that person for a
while, if there are good vibes,
you are connected

.Then pick another person

-And repeat

.The result is what we call a
random network
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Formalization (Erdos-Rényi or ER)

Sounds like “ERDOSH and REGN”

.For each pair of nodes in the graph
—-Perform a Bernoulli trial with probability p
."“Toss a biased coin with probability p of landing heads”
-If the trial succeeds, connect those nodes
LIf the coin lands heads, connect those nodes”
-Repeat for all pairs N(N —1)

2
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https://forvo.com/word/erd%C5%91s/
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Example: 3 networks, same parameters

N =100,p = 0.03

Nodes at the bottom ended up isolated
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Exercise

Guess a formula for (L) as a function of N and p

Actual number of links in ER networks is variable!
The expected number of links is <L>

Remember the network model has only two
parameters: N and p.

Actually, the model explicitly considers all
possible links: N(N-1)/2.
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The binomial distribution

.The distribution of the probability of obtaining x
successes in n independent trials, in which each trial
has probability of succeeding p

The order is not relevant! Exactly X “YES

How many sequences with T - 7, — T
X “YES” and n-x “NO”? Px = <$>p (1 — p)

Exactly n-x “NO”

== -, (5 =p LSO
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Degree distribution
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A key characteristic of a network: its
degree distribution

.One of the most evident characteristics of a network is its
degree distribution

-Is this distribution very skewed? Or every node is close to
some average? Is there a “typical” degree?

-Does it look like the degree distribution predicted by a
network formation model?

We will spend a fair amount of time studying the degree
distribution under various models
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Degree distribution in ER model

.Probability of finding a node with degree k
.Max number of “successes” (links) of a node is N-1
.Each possible link is present with prob p

N —1 1
ka( ! )Pk(l—p)N ok

| <]C> — Z kp(k) — p(N — 1) Exercise: Prove it!
k
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Links & average degree

.Expected number of links

N(N —1
<L>:p'LmaX:p ( 9 )
-Average degree
_2L) o
(k) = N = p(N —1)
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Degree distribution examples

.The peak is always at (kY =p(N — 1)

import numpy as np ' = Binom(40, 0.1)
from scipy.stats import binom 0.200 1 === Binom(40, 0.3)
from matplotlib import pyplot as plt 0175 | == Binom(40, 0.5)
X = np.arange(©, 40) 0.150 -

plt.figure(figsize=(8,5))

plt.bar(x, (binom(40, ©.1)).pmf(x), label='Binom(40, 0.1)") 2 0125
plt.bar(x, (binom(40, ©.3)).pmf(x), label='Binom(40, 0.3)") a
plt.bar(x, (binom(40, 0.5)).pmf(x), label='Binom(40, 0.5)") E 200 1
plt.gca().legend() 0075 -
plt.xlabel("Successes on 40 trials") '
plt.ylabel("Probability") 0.050
plt.show() '
0.025 -
0.000 - — : ;

0 5 10 15 20 25 30 35 40
Successes on 40 trials

@ python’
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Exercise [B. 2016, Ex. 3.11.1]

Expected number of links and average degree

.Consider an ER graph with N=3,000 p=1 0°
1)What is the expected number of links (L)?

2)What is the average degree (k)?

R
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Approximation: Poisson distribution

Valid if
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Poisson distribution

— It does not depend on N (valid only for large N)
- Completely described by a single parameter <k>

— Can be derived by the binomial distribution
by applying <k> << N (try it!)

-<k> << N, p <<N/(N-1), p << 1 (and large N)
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More examples (s
N =50,p =0.02, (k) ~ 1

cdf prob(d<=D)

pdf prob(d=D)
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More examples ws)
N =50,p=0.05, (k) =~ 2.5

pdf prob(d=D)
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More examples s
N =100,p = 0.01, (k) ~ 1

cdf prob(d<=D)

- pdf prob(d=D)
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More examples ws)
N =100,p = 0.025, (k) ~ 2.5

pdf prob(d=D)
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More examples )
N =500, p = 0.002, (k) =~ 1

s it . pdf prob(d=D)
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More examples )
N =500, p = 0.005, (k) ~ 2.5

pdf prob(d=D) cdf prob(d<=D)
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“Back of the envelope” calculations

Suppose N =7 x 109

.Suppose <k> =1,000

-A person knows the name of approx. 1,000 others
.<k>+ o is the range from 968 to 1,032

Js this realistic?
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Survey: how many WhatsApp contacts
do you have?

Oz 0
; T

https://forms.qgle/9XEYhzv2U5NrPQdHS8
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Video (02:17-03:15)
by Albert-Lasz|6 Barabasi (cont.)

https://www.youtube.com/watch?v=RfgjHoVCZwU
From “... in a random network, the average dominates.”
To “... does not capture how networks form”
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https://www.youtube.com/watch?v=RfgjHoVCZwU

Summary
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Things to remember

.The ER model

.Degree distribution in the ER model
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Sources

JA. L. Barabasi (2016). Network Science — Chapter 03

.Data-Driven Social Analytics course by Vicen¢c Gomez
and Andreas Kaltenbrunner

.URLs cited in the footer of specific slides
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http://networksciencebook.com/chapter/3
https://www.upf.edu/web/iis/DataDrivenSocialAnalytics

Practice on your own

.Indicate the expected number of edges of a network
with N=256, p=0.25; then compare your solution with

the one on this video:
E(J'éé' Kénj_’_

-

https://www.youtube.com/watch?v=2DckiyysQy4

N= 156
p: WL
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https://www.youtube.com/watch?v=2DckiyysQy4

