Hubs and Authorities

Social Networks Analysis and Graph Algorithms
Prof. Carlos Castillo — https://chato.cl/teach

Sources

- D. Easley and J. Kleinberg (2010): Networks, Crowds, and Markets - Chapter 14
- Fei Li's lecture on PageRank (2011)
- Evimaria Terzi's lecture on link analysis (2013)
- URLs in the footer of specific slides

Motivation: rank search results

- Demand
- Information needs are unclear and evolving
- Supply
- From scarcity to abundance: "filter failure"

Purpose of Link-Based Ranking

- Static (query-independent) ranking
- Dynamic (query-dependent) ranking
- Applications:
- Search in social networks
- Search on the web

Why computing hubs and authorities?

Example 1: "top automobile makers"

Query: Top automobile makers

Example 2: UK football teams on the web

Example: query

"barcelona museum"

How would you rank these pages?

Counting in-links for

"barcelona museum"

Value of a list of

"barcelona museum"

Re-weighting votes

by list values

Normalizing scores

The idea behind Hubs and Authorities [Kleinberg 1999]

- Highly-recommended items
appear in high-value lists
- High-value lists
contain highly-recommended items
- Repeated improvement
- Re-calculate scores several times

Limit values

This algorithm is called "HITS"

- Jon M. Kleinberg. 1999. Authoritative sources in a hyperlinked environment. J. ACM 46, 5 (September 1999), 604-632. [DOI]
- Query-dependent algorithm
- Get pages matching the query
- Expand to 1-hop neighborhood
- Find pages with good out-links ("hubs")
- Find pages with good in-links ("authorities")

Root set $=$ matches the query

Root Set

Base set $S=$ root set plus 1 -hop neighbors

How to compute hubs and authorities

Base graph S of n nodes

Bipartite graph of $2 n$ nodes

Bipartite graph of $2 n$ nodes

0) Initialization:

$$
\mathrm{h}_{i}=\hat{h}_{i}=1
$$

1) Iteration:

$$
\begin{array}{ll}
a_{i}=\sum_{j \rightarrow i} \hat{h}_{j} & \hat{a}_{i}=\frac{a_{i}}{\sum_{j} a_{j}} \\
h_{i}=\sum_{i \rightarrow j} \hat{a}_{j} & \hat{h}_{i}=\frac{h_{i}}{\sum_{j} h_{j}}
\end{array}
$$

2) Normalization:

What are we computing?

$$
\begin{aligned}
a^{t} & =A^{T} h^{t-1} \\
h^{t} & =A a^{t} \\
\text { replacing : } a^{t} & =A^{T} A a^{t-1} \\
\text { after convergence : } a & =A^{T} A a
\end{aligned}
$$

- Vector a is an eigenvector of $A^{T} A$
- Conversely, vector h is an eigenvector of $A A^{T}$

Dealing with weighted graphs

(this is an option that does not normalize weights, one can alternatively normalize them)

$$
\mathrm{h}_{i}=\hat{h}_{i}=1
$$

1) Iteration:

$$
\begin{array}{ll}
a_{i}=\sum_{j \rightarrow i}\left(w_{j i} \cdot \hat{h}_{j}\right) & \hat{a}_{i}=\frac{a_{i}}{\sum_{j} a_{j}} \\
h_{i}=\sum_{i \rightarrow j}\left(w_{i j} \cdot \hat{a}_{j}\right) & \hat{h}_{i}=\frac{h_{i}}{\sum_{j} h_{j}}
\end{array}
$$

Problem: cliques and quasi-cliques

Problem: tightly-knit communities

- Example: a graph made of a $(3,3)$-clique and a $(2,3)$-clique

Problem: tightly-knit communities

- Example: a graph made of a $(3,3)$-clique and a $(2,3)$-clique

3

Problem: tightly-knit communities

- Example: a graph made of a $(3,3)$-clique and a $(2,3)$-clique

Problem: tightly-knit communities

- Example: a graph made of a $(3,3)$-clique and a $(2,3)$-clique

What happens after n iterations?
Which community
"wins" (i.e., has the largest sum of scores)?

A different application of hubs and authorities

The legal precedent network

- Roe v Wade legalized abortion in the US
- Many cases reference it as a legal precedent
- This is a representation of some of those cases
 NCL Rev., 96, 227.

Hubs and authorities

on the legal precedent network

- We can compute authority in this network
- Re-compute every year
- Different cases acquire authority at different speeds!
(Roe v Wade legalized abortion, Brown v Board of Education declared race-segregated schools unconstitutional)

Summary

Things to remember

- What is the hubs and authority algorithm
- How to execute it step by step
- Practice with graphs on your own

Practice on your own

- Consider a directed bi-partite graph $G=\left(\mathrm{V}_{\mathrm{L}} \cup \mathrm{V}_{\mathrm{R}}, \mathrm{E}\right)$ in which $\mathrm{V}_{\mathrm{L}}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{V}_{\mathrm{R}}=$ $\{1,2, \ldots, 120\}$, and in which all edges go from a node in V_{L} to a node in V_{R} :
- Node a is connected to nodes $1,2, \ldots 120$.
- Node b is connected to nodes $1,2, \ldots 60$.
- Node c is connected to nodes $1,2, \ldots 30$.
- Node d is connected to nodes $1,2, \ldots 15$.
- Starting with $\hat{h}(1)(i)=1$ for $i \in\{a, b, c, d, 1,2, \ldots, 120\}$.
- 1. Compute a(1)(i) for $i \in\{1,2, \ldots, 120\}$
- 2. Compute â(1)(i) for $i \in\{1,2, \ldots, 120\}$
- 3. Compute $h(2)$ (i) for $i \in\{a, b, c, d\}$

