Hubs and Authorities

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo — <u>https://chato.cl/teach</u>

Sources

- D. Easley and J. Kleinberg (2010): Networks, Crowds, and Markets Chapter 14
- Fei Li's lecture on PageRank (2011)
- Evimaria Terzi's lecture on link analysis (2013)
- URLs in the footer of specific slides

Motivation: rank search results

- Demand
 - Information needs are unclear and evolving
- Supply
 - From scarcity to abundance: "filter failure"

Purpose of Link-Based Ranking

- Static (query-independent) ranking
- Dynamic (query-dependent) ranking
- Applications:
 - Search in social networks
 - Search on the web

Why computing hubs and authorities?

Example 1: "top automobile makers"

good Authorities

Query: Top automobile makers

http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture4/lecture4.html (2009)

Example 2: UK football teams on the web

blogspot.com	
blogspot.tw	
blogspot.ru	
blogspot.de	
blogspot.in	
wikipedia.org	
blogspot.com.es	
ibtimes.co.uk	
bleacherreport.com	arsenal.com
bbc.co.uk	
nuni	
kompas.com	
dagbladet.no	manutd.com
gazeta.ru	
bbc.com	
espnfc.us	chelseafc.com
espnfc.com	
hupu.com	tottenhamhotspur.com
sapo.pt	Busenes He and
sbnation.com	liverpoolfc.com

https://blog.majestic.com/development/hubs-of-authority-sankey-chart/ (2015)

Counting in-links for

"barcelona museum"

Value of a list of

"barcelona museum"

6

3

The idea behind Hubs and Authorities [Kleinberg 1999]

- Highly-recommended items appear in high-value lists
- High-value lists

contain highly-recommended items

- Repeated improvement
 - Re-calculate scores several times

This algorithm is called "HITS"

- Jon M. Kleinberg. 1999. Authoritative sources in a hyperlinked environment. J. ACM 46, 5 (September 1999), 604-632. [DOI]
- Query-dependent algorithm
 - Get pages matching the query
 - Expand to 1-hop neighborhood
 - Find pages with good out-links ("hubs")
 - Find pages with good in-links ("authorities")

Root set = matches the query

Root Set

Base set S = root set plus 1-hop neighbors

How to compute hubs and authorities

Base graph *S* of *n* nodes

Bipartite graph of 2n nodes

Bipartite graph of 2n nodes

0) Initialization:

$$\mathbf{h}_i = \hat{h}_i = 1$$

1) Iteration:

2) Normalization:

$$a_i = \sum_{j \to i} \hat{h}_j$$
$$h_i = \sum_j \hat{a}_j$$

$$\hat{a}_i = \frac{a_i}{\sum_j a_j}$$

$$\hat{h}_i = \frac{h_i}{\sum_j h_j}$$

Ĥ(1)	A(1)	Â(1)	H(2)	Ĥ(2)	A(2)	Â(2)
1	0	Complete	e the tab	le		
1	3	Which or	ne is the	largest h	ub?	
1	1	Which th			zy?	
1	1	Compare Rank by			by auth?	
1	1	Rank by	outdegre	e=rank	k by hub	?

Spreadsheet links: https://upfbarcelona.padlet.org/chato/shyq9m6f2g2dh1bw

What are we computing? $a^{t} = A^{T}h^{t-1}$ $h^{t} = Aa^{t}$ replacing : $a^{t} = A^{T}Aa^{t-1}$ after convergence : $a = A^{T}Aa$

- Vector a is an eigenvector of $A^T A$
- Conversely, vector h is an eigenvector of AA^{T}

Dealing with weighted graphs

(this is an option that does not normalize weights, one can alternatively normalize them)

 $\mathbf{h}_i = \hat{h}_i = 1$

1) Iteration:

2) Normalization:

 $\hat{a}_i = \frac{a_i}{\sum_j a_j}$

$$a_i = \sum_{j \to i} \left(w_{ji} \cdot \hat{h}_j \right)$$

$$h_i = \sum_{i \to j} \left(w_{ij} \cdot \hat{a}_j \right) \qquad \hat{h}_i = \frac{h_i}{\sum_j h}$$

Problem: cliques and quasi-cliques

Skipped in 2023

• Example: a graph made of a (3,3)-clique and a (2,3)-clique

Skipped in 2023

• Example: a graph made of a (3,3)-clique and a (2,3)-clique

• Example: a graph made of a (3,3)-clique and a (2,3)-clique

Skipped in 2023

• Example: a graph made of a (3,3)-clique and a (2,3)-clique

3x3x3 What happens after 3x3x3 n iterations? 3x3x3 Skipped in 2023 Which community 3x2x2 "wins" (i.e., has the 3x2x2 largest sum of scores)? 3

A different application of hubs and authorities

Skipped in 2023

The legal precedent network

- Roe v Wade legalized abortion in the US
- Many cases reference it as a legal precedent
- This is a representation of some of those cases

Hubs and authorities on the legal precedent network

- We can compute authority in this network
- Re-compute every year
- Different cases acquire authority at different speeds!

(Roe v Wade legalized abortion, Brown v Board of Education declared race-segregated schools unconstitutional)

Fowler, J. H., & Jeon, S. (2008). The authority of Supreme Court precedent. Social networks, 30(1), 16-30.

Summary

Things to remember

- What is the hubs and authority algorithm
- How to execute it step by step
- Practice with graphs on your own

Practice on your own

- Consider a directed bi-partite graph G = (V_L U V_R, E) in which V_L = {a, b, c, d} and V_R = {1, 2, . . . , 120}, and in which all edges go from a node in V_L to a node in V_R:
 - ⁻ Node a is connected to nodes 1, 2, . . . 120.
 - [–] Node b is connected to nodes 1, 2, . . . 60.
 - [–] Node c is connected to nodes 1, 2, . . . 30.
 - [–] Node d is connected to nodes 1, 2, . . . 15.
- Starting with $\hat{h}(1)$ (i) = 1 for i \in {a, b, c, d, 1, 2, . . . , 120}.
 - ⁻ 1. Compute a(1)(i) for $i \in \{1, 2, \ldots, 120\}$
 - 2. Compute $\hat{a}(1)(i)$ for $i \in \{1, 2, ..., 120\}$
 - [–] 3. Compute h(2) (i) for i \in {a, b, c, d}