# **Centrality: A case study**

#### **Introduction to network Science**

Instructor: Michele Starnini — <u>https://github.com/chatox/networks-science-course</u>



A: Degree

**B: Closeness** 

**C:** Betweenness

D. PageRank



HIGH

LOW

# Case study: Noble families in Florence in the 15th century

## **Florentine families**

# **.Noble families in Florence** around 1430

 Power struggle between two factions led by the Medici and the Strozzi

•The relatively newcomer Medici became, for a while, the wealthiest family in Europe ... they had their own bank!

Dataset collected by John
Padgett from historical
documents



# Wealth and political power



- •The dataset contains 116 families
- **.Gross wealth** in Florins (1 florin ~ 3.5g of gold)
- -These are all approximations assuming *florins* and *ducats* have similar value:
- •Leonardo da Vinci was paid ~100 florin per year (~1 painting), until he worked with the king of France, who paid ~400 florin per year
- •Michelangelo Buonarroti got paid ~200-450 florins per sculpture
- •A palace would cost a few thousand florins
- .Priorates is the cumulative number of seats in the city council along mulriple years

## Are wealth and political power related?

• Data science trick: if you want to understand if two variables are correlated, the first thing you should do is a simple scatter plot

It gives you a visual understanding of what's going on

.You might need to use log axis if variables are skewed

•After, you can start computing pearson coefficients, regressions, etc to obtain a quantitative understanding

## Wealth and political power (cont.)



### Credit graph



## Credit graph

isconi ortini

- 72 nodes (families)
- .125 edges (loans)
- Loan given by one family to a member of the other
- •Undirected in this
- dataset



#### Credit - giant connected component (70 nodes, 97%)



#### Credit - giant connected component (70 nodes, 97%)



| Closeness, betweenness, |                                |                 |  |  |  |  |
|-------------------------|--------------------------------|-----------------|--|--|--|--|
| eigencentrality         |                                |                 |  |  |  |  |
| Closeness               | Betweenness                    | Eigencentrality |  |  |  |  |
| •Peruzzi 0.39           | •Peruzzi 0.11                  | •Peruzzi 0.30   |  |  |  |  |
| •Medici 0.48            | •Medici 0.53                   | •Medici 0.31    |  |  |  |  |
| •Strozzi 0.28           | <ul><li>Strozzi 0.03</li></ul> | •Strozzi 0.07   |  |  |  |  |

What can you say about the correlations of this with wealth/power?

### Correlations

|                   | Gwealth | Npriors | c_degree | c_closeness | c_betweenness | c_eigencentrality |
|-------------------|---------|---------|----------|-------------|---------------|-------------------|
| Gwealth           | 1.00    | 0.39    | 0.42     | 0.21        | 0.40          | 0.34              |
| Npriors           | 0.39    | 1.00    | 0.27     | 0.04        | 0.20          | 0.19              |
| c_degree          | 0.42    | 0.27    | 1.00     | 0.67        | 0.84          | 0.88              |
| c_closeness       | 0.21    | 0.04    | 0.67     | 1.00        | 0.59          | 0.79              |
| c_betweenness     | 0.40    | 0.20    | 0.84     | 0.59        | 1.00          | 0.59              |
| c_eigencentrality | 0.34    | 0.19    | 0.88     | 0.79        | 0.59          | 1.00              |

Do you see the block structure in this matrix? What does it mean?

### Marriages graph





## Marriages graph

Federighi

Dello\_Scarfa

.96 nodes (families)

**.**157 edges (marriages)

 Undirected and unweighted



Raúg

#### Marriages - giant connected component (90 nodes, 94%)



#### Marriages - giant connected component (90 nodes, 94%)



| Closeness, betweenness, |               |                 |  |  |  |  |
|-------------------------|---------------|-----------------|--|--|--|--|
| eigencentrality         |               |                 |  |  |  |  |
| Closeness               | Betweenness   | Eigencentrality |  |  |  |  |
| •Peruzzi 0.42           | •Peruzzi 0.15 | •Peruzzi 0.32   |  |  |  |  |
| •Medici 0.44            | •Medici 0.26  | •Medici 0.27    |  |  |  |  |
| •Strozzi 0.46           | •Strozzi 0.35 | •Strozzi 0.40   |  |  |  |  |

What can you say about the correlations of this with wealth/power?

### Correlations

|                   | Gwealth | Npriors | m_degree | m_closeness | m_betweenness | m_eigencentrality | c_degree | c_closeness | c_betweenness | c_eigencentrality |
|-------------------|---------|---------|----------|-------------|---------------|-------------------|----------|-------------|---------------|-------------------|
| Gwealth           | 1.00    | 0.44    | 0.79     | 0.67        | 0.77          | 0.76              | 0.39     | 0.22        | 0.40          | 0.33              |
| Npriors           | 0.44    | 1.00    | 0.69     | 0.53        | 0.71          | 0.63              | 0.31     | 0.03        | 0.24          | 0.19              |
| m_degree          | 0.79    | 0.69    | 1.00     | 0.77        | 0.95          | 0.93              | 0.48     | 0.30        | 0.45          | 0.42              |
| m_closeness       | 0.67    | 0.53    | 0.77     | 1.00        | 0.66          | 0.90              | 0.42     | 0.27        | 0.29          | 0.44              |
| m_betweenness     | 0.77    | 0.71    | 0.95     | 0.66        | 1.00          | 0.81              | 0.43     | 0.25        | 0.45          | 0.33              |
| m_eigencentrality | 0.76    | 0.63    | 0.93     | 0.90        | 0.81          | 1.00              | 0.45     | 0.29        | 0.32          | 0.46              |
| c_degree          | 0.39    | 0.31    | 0.48     | 0.42        | 0.43          | 0.45              | 1.00     | 0.70        | 0.84          | 0.87              |
| c_closeness       | 0.22    | 0.03    | 0.30     | 0.27        | 0.25          | 0.29              | 0.70     | 1.00        | 0.61          | 0.81              |
| c_betweenness     | 0.40    | 0.24    | 0.45     | 0.29        | 0.45          | 0.32              | 0.84     | 0.61        | 1.00          | 0.57              |
| c_eigencentrality | 0.33    | 0.19    | 0.42     | 0.44        | 0.33          | 0.46              | 0.87     | 0.81        | 0.57          | 1.00              |

Do you see the block structure in this matrix? What does it mean? What is a good predictor of wealth/power?

### Summary

## Things to remember

- •The analysis of social networks requires defining suitable graphs
- •There is usually a step in which one compares this with domainspecific metrics
- In this use case, the marriage graph better describes the wealth/power balance during the power struggle...

 ... but the credit graph probably explains why the Medici won the fight and sent to exhile Strozzi (money > love)