Betweenness

Social Networks Analysis and Graph Algorithms
Prof. Carlos Castillo — https://chato.cl/teach

Sources

- D. Easly and J. Kleinberg (2010). Networks, Crowds, and Markets Section 3.6B
- A. L. Barabási (2016). Network Science - Section 9.3
- P. Boldi and S. Vigna (2014). Axioms for Centrality in Internet Mathematics
- Esposito and Pesce: Survey of Centrality 2015.
- URLs cited in the footer of slides

Types of centrality measure

- Non-spectral
- Degree
- Closeness and harmonic closeness
- Betweenness
- Spectral
- HITS
- PageRank

Betweenness

Definitions

The betweenness of a node is the number of shortest paths that cross that node

The betweenness of an edge is the number of shortest paths that cross that edge

Node Betweenness

Graph with nodes

 colored according to node betweennessred=low, blue=high

Example 1

There are 20 shortest paths that cross through the orange node. Why?

The shortest path between nodes X and Y does not cross the orange node, but the shortest path between nodes X and Z does cross the orange node.

Example 2

Here, nodes and edges are labeled with their betweenness.

Exercise

Compute the node betweenness of the nodes marked with letters.

Pin board: https://upfbarcelona.padlet.org/chato/asfs154waxnnkhgo

Exercise (cont.)

What is a good algorithm to compute node betweenness of all nodes?

What limitations does your algorithm have?

Edge Betweenness

Edge Betweenness

An edge has high betweenness if it is part of many shortest-paths.

Approximate method [sampling]

- Label all edges e with $b(e)=0$
- Repeat K times:
- Pick a random pair of nodes (u, v)
- Compute shortest path between u and v
$-\mathrm{b}(\mathrm{e}) \leftarrow \mathrm{b}(\mathrm{e})+1$ for all edges e along the path
- $b(e)$ is a lower bound for betweenness (e)
- Useful if we only care about finding the edge with the highest betweenness, or finding the top-k edges with the highest betweenness \rightarrow an early stopping criterion is possible

Exact algorithm [Brandes, Newman]

- For every node u in V
- Layer the graph performing a BFS from u
- For every node v in $V, v \neq u$, sorted by layer
- Assign to v a number $s(v)$ indicating how many shortest paths from u arrive to v
- For every node v in $V, v \neq u$, sorted by reverse layer
- Score to distribute $=1+$ score from children
- Add score to parent edges in proportion to $s(v)$
- In the end divide all edge scores by two

Example

For every node u in V

- Layer the graph performing a BFS from u
- For every node v in V , $\mathrm{v} \neq \mathrm{u}$, sorted by layer
- Assign to va number s(v) indicating how many shortest paths from u arrive to v
- For every node v in V , $\mathrm{v} \neq \mathrm{u}$, sorted by reverse layer
- Score to distribute = $1+$ score from children
- Add score to distribute to parent edges in proportion to $\mathrm{s}(\mathrm{v})$
In the end divide all edge scores by two

Example

- For every node v in V, $v \neq u$, sorted by reverse layer
- Score to distribute $=1+$ score from children
- Add score to distribute to parent edges in proportion to $s(v)$
In the end divide all edge scores by two

All nodes in layer 1 get $s(v)=1$
Remaining nodes: simply add $\mathrm{s}($.$) of their parents$

Example

For every node u in V

- Layer the graph performing a BFS from u
- For every node v in V, $v \neq u$, sorted by layer
- Assign to v a number $s(v)$ indicating how many shortest paths from u arrive to v
- For every node v in V, $v \neq u$, sorted by rev. layer
- Score to distribute = 1 + score from children
- Add score to distribute to parent edges in proportion to $\mathrm{s}(\mathrm{v})$
In the end divide all edge scores by two

Nodes without children distribute a score of 1

Other nodes distribute 1 + whatever they receive from their children

Result

For every node u in V

- Layer the graph performing a BFS from u
- For every node v in V , $\mathrm{v} \neq \mathrm{u}$, sorted by layer
- Assign to va number s(v) indicating how many shortest paths from u arrive to v
- For every node v in V , $\mathrm{v} \neq \mathrm{u}$, sorted by reverse layer
- Score to distribute = $1+$ score from children
- Add score to distribute to parent edges in proportion to $\mathrm{s}(\mathrm{v})$
In the end divide all edge scores by two

Computed using NetworkX (edge betweenness)

NetworkX code

```
import networkx as nx
g = nx.Graph()
g.add_edge("A", "B")
g.add_edge("A", "C")
g.add_edge("A", "D")
g.add_edge("A", "E")
g.add_edge("B", "C")
g.add_edge("B", "F")
g.add_edge("C", "F")
g.add_edge("D", "G")
g.add_edge("D", "H")
g.add_edge("E", "H")
g.add_edge("F", "I")
g.add_edge("G", "I")
g.add_edge("G", "J")
g.add_edge("H", "J")
g.add_edge("I", "K")
g.add_edge("J", "K")
nx.edge_betweenness(g, normalized=False)
```

nx.draw_spring(g, with_labels=True)

```
```

```
nx.draw_spring(g, with_labels=True)
```

```


\section*{Exercise}

Try to compute edge betweenness by inspection first

Then use the Brandes-Newman algorithm; you should get the same results

\section*{For every node u in V}
- Layer the graph performing a BFS from u
- For every node \(v\) in \(V, v \neq u\), sorted by layer
- Assign to v a number s(v) indicating how many shortest paths from \(u\) arrive to \(v\)
- For every node \(v\) in \(V\), \(v \neq u\), sorted by reverse layer
- Score to distribute = \(1+\) score from children
- Add score to distribute to parent edges in proportion to \(\mathrm{s}(\mathrm{v})\)
In the end divide all edge scores by two


\section*{Fractional values?}
- In a graph with cycles, you may get fractional values of the edge betweenness for an edge
- Conceptually, this is because in a graph with cycles there might be \(s>1\) shortest paths between two nodes, each of them counts \(1 / \mathrm{s}\)
A: Degree
B: Closeness
C: Betweenness


\section*{Summary}

\section*{Things to remember}
- Closeness and harmonic closeness
- Node and edge betweenness
- Practice running the Brandes-Newman algorithm on small graphs
- Write code to execute the Brandes-Newman algorithm

\section*{Practice on your own}
- Compute edge
betweenness on
this graph


\section*{Practice on your own (cont.)}


If you don't get this result, check:
https://www.youtube.com/watch?v=uYjWbp8VC7c

\section*{Two constructive problems}
1.Sketch a graph of N nodes in which a node, which you should mark with an asterisk \(\left(^{*}\right)\), should have betweenness approximately equal to N and closeness approximately \(1 / \mathrm{N}\) for large N . Explain briefly.
2.Sketch a graph of N nodes in which a node, which you should mark with an asterisk \(\left(^{*}\right)\), should have betweenness approximately equal to N and closeness approximately \(2 / \mathrm{N}^{2}\) for large N . Explain briefly.

Do not use a concrete \(N\). Use a general \(N\), for instance by using the ellipsis (. . . ) to denote multiple nodes.```

