Closeness

Social Networks Analysis and Graph Algorithms
Prof. Carlos Castillo — https://chato.cl/teach

Sources

- D. Easley and J. Kleinberg (2010). Networks, Crowds, and Markets Section 3.6B
- P. Boldi and S. Vigna (2014). Axioms for Centrality in Internet Mathematics.
- Esposito and Pesce (2015): Survey of Centrality.
- F. Menczer, S. Fortunato, C. A. Davis (2020). A First Course in Network Science - Chapter 02

A central question in networks is

determining who is more ... central

https://youtu.be/wQ3TX65MnjM?t=22

Types of centrality measure

- Non-spectral
- Degree
- Closeness and harmonic closeness
- Betweenness
- Spectral
- HITS
- PageRank

Is u a well-connected person?

- Degree: u has many connections
- Closeness: u is close to many people
- Average distance from u is small
- Betweenness: many connections pass through u
- Large number of shortest paths pass through u
- PageRank: u is connected to the well-connected

Closeness

Closeness

- Distance between two nodes is $d(u, v)$
- Closeness is the reciprocal of the sum of distances

$$
\operatorname{closeness}(u)=\frac{1}{\sum_{v \in V, v \neq u} d(u, v)}
$$

- Some graphs are not connected, in that case $d(u, v)$ can be ∞; assuming $1 / \infty=0$ one can define the harmonic closeness:

$$
\operatorname{hcloseness}(u)=\sum_{v \neq u} \frac{1}{d(u, v)}
$$

Exercise

$$
\operatorname{closeness}(u)=\frac{1}{\sum_{v \in V, v \neq u} d(u, v)}
$$

Compute closeness and harmonic closeness for all the nodes; $d(u, v)=1$ if v is a neighbor of u $\operatorname{hcloseness}(u)=\sum_{v \in V, v \neq u} \frac{1}{d(u, v)}$

Spreadsheet links: https://upfbarcelona.padlet.org/chato/shyq9m6f2g2dh1bw

Summary

Things to remember

- Closeness and harmonic closeness definitions
- Try to compute them on your own on a graph

Constructive problems

- Practice drawing examples of graphs in which a chosen node has high degree but low closeness, or viceversa
- Can you find a graph in which there is a node that has the maximum degree and the minimum closeness? If not, why?

