Homophily and triangles

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo — <u>https://chato.cl/teach</u>

Contents

- This is all about friends, and friends of friends
- Homophily
- Clustering coefficient

Sources

- A. L. Barabási (2016). Network Science Chapter 02
- F. Menczer, S. Fortunato, C. A. Davis (2020). A First Course in Network Science – Chapter 02
- URLs cited in the footer of specific slides

Homophily

Who is a friend? [Homophily]

- In social networks, nodes have characteristics that influence their preferences
 - Age, gender identity, ethnicity, sexual preference,
 location, topics of interest, artistic sensitivities, ...
- People tend to befriend those who are like them: that is called **homophily**

"Birds of a feather flock together"

Source: Menczer, Fortunato, David: A First Course on Networks Science. Cambridge, 2020.

Quantifying homophily

- Let G be a graph of N nodes: $N_{_{\rm a}}$ "yellow" and $N_{_{\rm b}}$ "blue" $N=N_{_{\rm a}}+N_{_{\rm b}}$
- Let G have L undirected links (including self loops), of which L_{aa} connect yellow to yellow, L_{ab} connect yellow to blue, and L_{bb} connect blue to blue

$$\mathsf{L} = \mathsf{L}_{aa} + \mathsf{L}_{ab} + \mathsf{L}_{bb} \qquad \mathsf{L}_{a} = \mathsf{L}_{aa} + \mathsf{L}_{ab} \qquad \mathsf{L}_{b} = \mathsf{L}_{bb} + \mathsf{L}_{ab}$$

$N_a = 6$, $N_b = 6$, $L_a = 14$, $L_b = 16$, $L_{ab} = 5$,

Source: Menczer, Fortunato, David: A First Course on Networks Science. Cambridge, 2020.

Expected links across groups

If yellow nodes have L_a links placed at random (incl. self loops), how many should go to a blue node?

$$L_a\left(\frac{N_b}{N}\right)$$

Quantifying homophily of a group

- We compare observed against the expected number of links crossing to the other group
 - $<1 \Rightarrow homophily$ $1 \Rightarrow neutral$ $>1 \Rightarrow heterophily$

Homophily(a) =
$$\frac{L_{ab}}{L_a\left(\frac{N_b}{N}\right)}$$

Homophily(b) =
$$\frac{L_{ab}}{L_b\left(\frac{N_a}{N}\right)}$$

Exercise

Compute homophily of both groups and indicate if each group is homophilic, heterophilic, or neutral

Clustering coefficient

Who is a friend? [Triangle closure]

A prevalent way in which we form friendships is by befriending **friends of friends**

Source: Menczer, Fortunato, David: A First Course on Networks Science. Cambridge, 2020.

Tendency to form triangles

The dynamics **on** the network, i.e., information diffusion, affect the dynamics **of** the network, i.e., the creation of links

• *B* is more likely to start following *A* after seeing content posted by *A* and re-posted by an account *C* that *B* already follows

Example 1

Node c has 3 neighbors: e, b, g They form two triangles out of the possible 3 (the missing one is drawn with a dotted line)

Source: Menczer, Fortunato, David: A First Course on Networks Science. Cambridge, 2020.

Example 2

Node b has 4 neighbors: e, c, g, h They form two triangles out of the possible 6 (the missing ones are drawn with a dotted line)

Remember

The maximum number of links between k nodes is

$$\frac{k(k-1)}{2}$$

Local clustering coefficient

- The local clustering coefficient C_i is a property of a node i
- Let L_i represent the number of links among neighbors of node i

$$C_{i} = \frac{L_{i}}{\frac{k_{i}(k_{i}-1)}{2}} = \frac{2L_{i}}{k_{i}(k_{i}-1)} \quad C_{i} \triangleq 0 \text{ if } k_{i} \le 1$$

What is the local clustering coefficient of each node?

$$C_i = \frac{2L_i}{k_i(k_i - 1)}$$

 $C_i \triangleq 0 \text{ if } k_i \leq 1$

22/25

Average clustering coefficient ("global clustering coefficient")

The average clustering coefficient is a property of the entire graph N

Sometimes this is called the *curvature* of a graph

Summary

Things to remember

- How to quantify if a group is
 - Homophilic
 - Heterophilic
 - Neutral
- Local and global clustering coefficient

Practice on your own

- Determine if the set $\{C, D, G\}$ is homophilic or heterophilic
- Calculate local clustering coefficient of each node in this graph

