Connectivity in graphs

Social Networks Analysis and Graph Algorithms
Prof. Carlos Castillo - https://chato.cl/teach

Contents

- Sparsity
- Paths and distances
- Connected components

Sources

- A. L. Barabási (2016). Network Science - Chapter 01
- F. Menczer, S. Fortunato, C. A. Davis (2020). A

First Course in Network Science - Chapter 02

- URLs cited in the footer of specific slides

Sparsity

Sparse network

Dense network

[Source]

Real networks are sparse

- Theoretically $\quad L_{\max }=\binom{N}{2}=\frac{N(N-1)}{2}$
- Most real networks are sparse, i.e., $L \ll L_{\max }$
L is the number of links in the network, N is the number of nodes on it

How sparse are some networks?

| Network | \|V| | \|E| | Max \|E| |
| :--- | :--- | :--- | :--- |
| Zachary's Karate Club | 34 | 78 | 561 |
| Game of Thrones | 84 | 216 | 3496 |
| US companies ownership | 1351 | 6721 | 911 K |
| Marvel comics | 6 K | 167 K | 17 M |

Example:

 proteininteraction
network
$(\mathrm{N}=2 \mathrm{~K}, \mathrm{~L}=3 \mathrm{~K})$

Example:

dolphins

($\mathrm{N}=62, \mathrm{~L}=318$)

Example: people you follow on

Twitter (followees) vs people you have sent at least two messages to ("friends")

Why are networks sparse?

- Different mechanisms, think about it from the node perspective:
- How many items could the node be connected to
- Would it be realistic to connect to a large fraction of them?
- In social networks, Dunbar's number ($\simeq 150$)

DUNBAR'S NUMBER: 150
TYPICAL NUMBER OF PEOPLE WE CAN KEEP TRACK OF AND CONSIDER PART OF OUR ONGOING SOCIA NETWORK

Paths and distances

Paths: sequences of edges

- The destination of each edge is the origin of the next edge
- In directed graphs, paths follow the direction of the edges
- The length of the path is the number of edges on it
- Example: path in orange has length 5

Distance

- If two nodes i, j are in the same connected component:
- the distance between i and j , denoted by d_{ij} is the length of the shortest path between them
- If they are not in the same connected component, the distance is by definition infinite (∞)

Undirected
Blue = shortest path between nodes a and b

Diameter

- The diameter of a network is the maximum distance between two nodes on it, $\mathrm{d}_{\text {max }}$
- The effective diameter (or effective-90\% diameter) is a number d such that 90% of the pairs of nodes (i, j) are at a distance smaller than d
- The average distance is $\langle\mathrm{d}\rangle$, and is measured only for nodes that are in the same connected component

Connected components

Connectedness

- If a path exists between two nodes i, j : those nodes are part of the same connected component
- A connected graph has only one connected component
- A singleton is a connected component with only one node

Connected graphs

A disconnected graph has an adjacency matrix that can be arranged in block diagonal form
a. disconnected
a.

b. connected

Connectedness in directed graphs

- A directed graph is strongly connected if it has only one connected component
- A directed graph is weakly connected if, when seen as undirected, has only one connected component

Connectedness example (undirected)

Undirected

- Is not connected
- Has 3 connected components
- One of the connected components is a singleton

Connectedness example (directed)

Directed

- Is not strongly connected
- Is not weakly connected
- Has 3 connected components

Quick exercise

Find the strongly connected components

Summary

Things to remember

- Sparse vs dense graph
- Distance, diameter, effective diameter
- In directed and undirected graphs
- Connected components
- In directed and undirected graphs

Practice on your own

- Measure the sparsity of this graph $L / L_{\text {max }}$
(ignore direction of links)

Practice on your own (cont.)

- Compute the distance between two nodes
- Compute the diameter of a graph
- Identify connected components

