Connectivity in graphs

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo — <u>https://chato.cl/teach</u>

Contents

- Sparsity
- Paths and distances
- Connected components

Sources

- A. L. Barabási (2016). Network Science Chapter 01
- F. Menczer, S. Fortunato, C. A. Davis (2020). A First Course in Network Science – Chapter 02
- URLs cited in the footer of specific slides

Sparsity

Sparse network

Dense network

[Source]

Real networks are sparse

• Theoretically
$$L_{\max} = \binom{N}{2} = \frac{N(N-1)}{2}$$

• Most real networks are sparse, i.e., $L \ll L_{max}$

L is the number of links in the network, N is the number of nodes on it

How sparse are some networks?

Network	[V]	E	Max E
Zachary's Karate Club	34	78	561
Game of Thrones	84	216	3496
US companies ownership	1351	6721	911K
Marvel comics	6K	167K	17M

https://github.com/chatox/networks-science-course/tree/master/practicum/data

o/28

Example:

dolphins

(N=62, L=318)

https://www.cise.ufl.edu/research/sparse/matrices/Newman/dolphins.html

45 **Example:** people 40 35 you follow on 30 Twitter (followees) Number of Friends 25 vs people you have 20 15 sent at least two 10 messages to 5 00 ("friends") 200 400

Huberman, B., Romero, D. M., & Wu, F. (2008). Social networks that matter: Twitter under the microscope. First Monday, 14(1). 10/28

Why are networks sparse?

- Different mechanisms, think about it from the node perspective:
 - How many items **could** the node be connected to
 - Would it be **realistic** to connect to a large fraction of them?
- In social networks, Dunbar's number (\simeq 150)

DVNBAR'S NUMBER: 150

TYPICAL NUMBER OF PEOPLE WE CAN KEEP TRACK OF AND CONSIDER PART OF OUR ONGOING SOCIAL NETWORK

[Sketchplanations]

Paths and distances

Paths: sequences of edges

- The destination of each edge is the origin of the next edge
 - In directed graphs, paths follow the direction of the edges
- The length of the path is the number of edges on it
 - Example: path in orange has length 5

Distance

- If two nodes i, j are in the same connected component:
 - the distance between i and j, denoted by d_{ij} is the length
 of the shortest path between them
- If they are not in the same connected component, the distance is by definition infinite (∞)

Source: Menczer, Fortunato, Davis: A First Course on Networks Science. Cambridge, 2020.

Diameter

- The diameter of a network is the maximum distance between two nodes on it, $\rm d_{max}$
- The **effective diameter** (or effective-90% diameter) is a number d such that 90% of the pairs of nodes (i,j) are at a distance smaller than d
- The **average distance** is <d>, and is measured only for nodes that are in the same connected component

Connected components

Connectedness

- If a path exists between two nodes i, j: those nodes are part of the same connected component
- A **connected graph** has only one connected component
- A **singleton** is a connected component with only one node

Connected graphs

A disconnected graph has an adjacency matrix that can be arranged in block diagonal form

2

a.

a. disconnected

b. connected

Connectedness in directed graphs

- A directed graph is **strongly connected** if it has only one connected component
- A directed graph is weakly connected if, when seen as undirected, has only one connected component

Connectedness example (undirected)

- Is not connected
- Has 3 connected

components

• One of the connected components is a singleton

Connectedness example (directed)

- Is not strongly connected
- Is not weakly connected
- Has 3 connected

components

Quick exercise Find the strongly connected components

https://www.programiz.com/dsa/strongly-connected-components

Summary

Things to remember

- Sparse vs dense graph
- Distance, diameter, effective diameter
 - In directed and undirected graphs
- Connected components
 - In directed and undirected graphs

Practice on your own

• Measure the sparsity of this graph $L/L_{
m max}$

(ignore direction of links)

Practice on your own (cont.)

- Compute the distance between two nodes
- Compute the diameter of a graph
- Identify connected components