Graph Theory Basics

Social Networks Analysis and Graph Algorithms
Prof. Carlos Castillo - https://chato.cl/teach

Contents

- Notation for graphs
- Degree distributions
- Adjacency matrices

Sources

- A. L. Barabási (2016). Network Science Chapter 02
- URLs cited in the footer of specific slides

Notation for a graph

- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- V: nodes or vertices
- E: links or edges
- $|\mathrm{V}|=\mathrm{N}$ size of graph
- $|E|=L$ number of links

Subgraph

- Given $G=(V, E)$
- A subgraph induced by a nodeset S is the graph $G^{\prime}=(S, F)$ defined by:
nodes in S
edges in $F=\{(u, v) \in E$ s.t. $u \in S$ and $v \in S\}$

Typical notation variations

- You may find that G is denoted by (N, A), this is typical of directed graphs, means "nodes, arcs"
- You may find that
- $|\mathrm{V}|$ is denoted by n or N
- $|E|$ is denoted by m, M, or L

Example graphs we will use

| Network | \|V| | \|E| |
| :--- | :--- | :--- |
| Zachary's Karate Club (karate.gml) | 34 | 78 |
| Game of Thrones (got-relationships.csv) | 84 | 216 |
| US companies ownership | 1351 | 6721 |
| Marvel comics (hero-network.csv) | $6 K$ | 167 K |

Directed vs undirected graphs

- In an undirected graph
- E is a symmetric relation

$$
(u, v) \in E \Rightarrow(v, u) \in E
$$

- In a directed graph, also known as "digraph"
- E is not a symmetric relation

$$
(u, v) \in E \nRightarrow(v, u) \in E
$$

Weighted vs unweighted graphs

- In a weighted graph edges have weights denoting the strength or importance of a connection
- When drawing, typically larger weights are drawn with ticker lines

Example:

weighted

 networks

EU imports (top)
and exports (bottom) of wine

Degree

Degree

- Node i has degree k_{i}
- This is the number of links incident on this node
- The total number of links L is given by

$$
L=\frac{1}{2} \sum_{i=1}^{N} k_{i}
$$

- Average degree

$$
\langle k\rangle=\frac{1}{N} \sum_{i=1}^{N} k_{i}=\frac{2 L}{N}
$$

In directed graphs

- We distinguish in-degree from out-degree
- Incoming and outgoing links, respectively
- Degree is the sum of both $k_{i}=k_{i}^{\text {in }}+k_{i}^{\text {out }}$
- Counting total number of links:

$$
L=\sum_{i=1}^{N} k_{i}^{\mathrm{in}}=\sum_{i=1}^{N} k_{i}^{\text {out }}
$$

In weighted graphs

We speak of "weighted degree" or "strength"

Degree distribution

- If there are N_{k} nodes with degree k
- The degree distribution is given by $p_{k}=\frac{N_{k}}{N}$
- The average degree is then $\langle k\rangle=\sum_{k=0}^{\infty} k p_{k}$

Degree distribution; two toy graphs

Exercise
 Draw the degree distribution of these graphs

Spreadsheet links: https://upfbarcelona.padlet.org/chato/shyq9m6f2g2dh1bw

Degree distribution; real graph

Log-log scale

Adjacency matrix

What is an adjacency matrix

- A is the adjacency matrix of $G=(\mathrm{V}, \mathrm{E})$ iff:
- A has $|\mathrm{V}|$ rows and $|\mathrm{V}|$ columns
$-A_{i j}=1$ if $(i, j) \in E$
$-A_{i j}=0 i f(i, j) \notin E$
- $A_{i j}$ always means row i, column j
- Sometimes Barabási's book has this wrong

Examples

Undirected graph

Directed graph

$$
A_{i j}=\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
$$

$A_{i j}$ always means row i, column j

Properties of adjacency matrices

- G is undirected $\Leftrightarrow A$ is symmetric
- G has a self-loop
\Leftrightarrow A has a non-zero element in the diagonal
- G is complete $\Leftrightarrow A_{i j} \neq 0$ (except if $\mathrm{i}=\mathrm{j}$)

Quick Exercise

- In terms of A, what is the expression for:

$$
\begin{aligned}
k_{i}^{\mathrm{in}} & = \\
k_{i}^{\mathrm{out}} & =
\end{aligned}
$$

If a graph is disconnected

Disconnected graphs have adjacency matrices with block structure

$$
A=\left[\begin{array}{cc}
S & 0 \\
0 & S^{\prime}
\end{array}\right]
$$

More concepts

Some graphs are multi-layer

- Multi-layer graphs have different edges over the same nodes
- Example graph of 61 employees of a university department, with links indicating: coworking, having lunch together, being connected on Facebook, being actual friends, or being co-authors

(a) Work.

(b) Lunch.

(c) Facebook.

(d) Friend.

(e) Coauthor.

Some graphs are time-evolving

Temporal, or

 "time-evolving" graphAt each timestep
there are new
nodes and/or edges
(and/or deletions)

Some graphs are bi-partite

- A bipartite graph is a graph
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ such that
$V=V_{L} \cup V_{R}, V_{L} \cap V_{R}=\emptyset, E \subseteq V_{L} \times V_{R}$

Exercise: project a bipartite network

Some graphs have a name

Clique and Bi-partite clique

- A clique is a complete (sub)graph: $E=(V \times V)$
- An n-clique is a complete graph of n nodes
- A bi-partite clique is such that

$$
V=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\emptyset, E=\left(V_{1} \times V_{2}\right)
$$

- A $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$-clique is a bipartite clique such that

$$
\left|V_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}
$$

Note: "clique" in popular culture

In some parts of
Latin America, a
"clica" is a close group of friends, or sometimes a group within a gang

Photo credit: @astro_ir

Summary

Things to remember

- Definitions
- degree, in-degree, out-degree
- time-evolving graph, multi-layer graph
- line graph, cycle graph, star graph, lattice, bi-partite graph, clique
- Writing the adjacency matrix of a graph, and drawing a graph given its adjacency matrix
- Plotting the degree distribution of a graph
- Projecting a bi-partite graph

Practice on your own

Draw the indegree, outdegree, degre distribution

Write the adjacency matrix

Practice on your own

How do you call the sub-graph induced by nodesets:

- $\{\mathrm{H}, \mathrm{A}, \mathrm{B}\}$
- $\{\mathrm{G}, \mathrm{H}, \mathrm{D}\}$
- $\{B, D, E, G\}$
- $\{\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}\}$

