Graph Theory: Basics

Introduction to network Science

Instructor: Michele Starnini — <u>https://github.com/chatox/networks-science-course</u>

Network Science or Graph Theory?

	Field	When	What	How
Graphs	mathematics (computer science)	1960-70	Theory	Structural properties
Networks	physics	2000- present	Applications	Complex systems, Dynamical processes

Nobody cares! Completely equivalent

What is (modern) Network Science

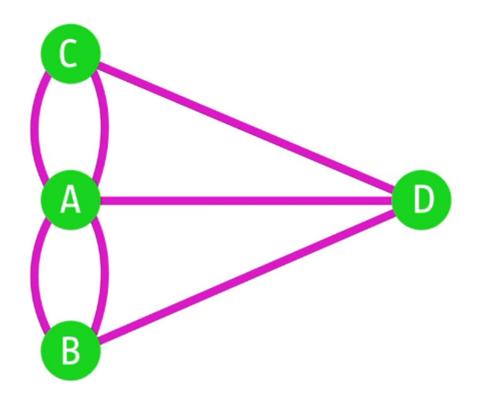
- Mathematical formalism from graph theory
- New insights from **statistical physics**
- Recent availability of very large databases on networked systems
- Computational resources to analyze them

Contents

- Directed, weighted, ... many kind of graphs!
- Density & Sparsity
- Degrees
- Adjacency matrices

Notation for a graph

- G = (V,E)
 - V: nodes or vertices
 - E: links or edges
- |V| = N size of graph
- |E| = L (or E) number of links



Subgraph

- Given G = (V,E)
- A subgraph induced by a nodeset S is the graph G'=(S,F) defined by:
 - nodes in S
 - edges in $F = \{ (u,v) \in E \text{ s.t. } u \in S \text{ and } v \in S \}$

Directed vs undirected graphs

- . In an undirected graph
 - E is a symmetric relation

$$(u,v) \in E \Rightarrow (v,u) \in E$$

- . In a directed graph, also known as "digraph"
 - E is not a symmetric relation

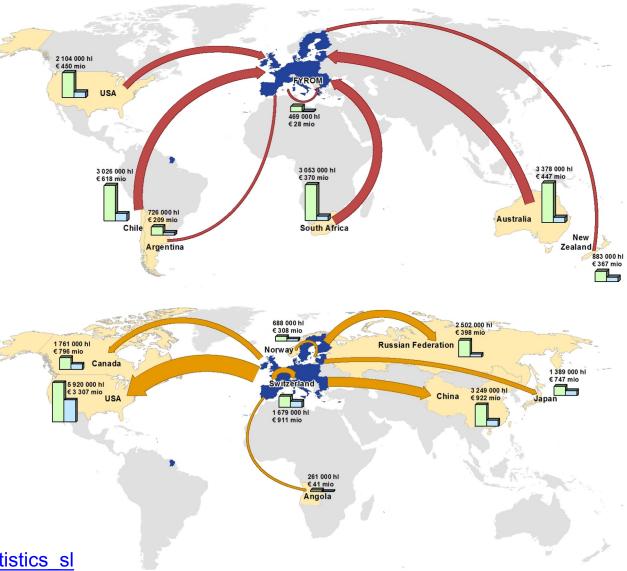
$$(u,v) \in E \not\Rightarrow (v,u) \in E$$

Weighted vs unweighted graphs

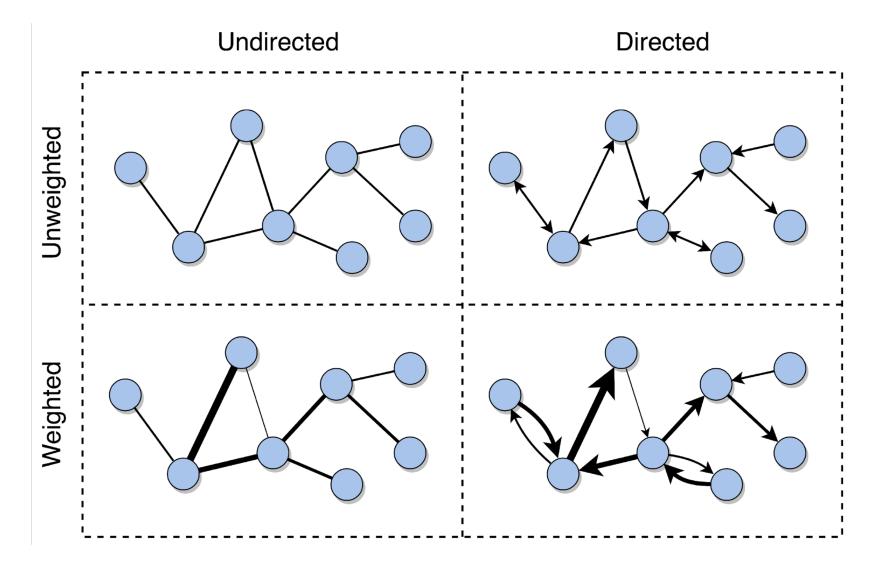
- In a weighted graph edges have weights denoting the strength or importance of a connection
- When drawing, typically larger weights are drawn with ticker lines

Weighted networks

EU imports (top) and exports (bottom) of wine



https://ec.europa.eu/agriculture/wine/statistics_sl



Source: Menczer, Fortunato, David: <u>A First Course on Networks Science</u>. Cambridge, 2020.

Example graphs we will use

Network	Ν	Е
Zachary's Karate Club (karate.gml)	34	78
Game of Thrones (got-relationships.csv)	84	216
US companies ownership	1351	6721
Marvel comics (hero-network.csv)	6K	167K

https://github.com/chatox/networks-science-course/tree/master/practicum/data

Density and sparsity

- Network size *N* = number of nodes
- L = number of links
- Maximum possible number of links:

• Density:
$$d = \frac{L}{L_{max}} = \frac{2L}{N(N-1)}$$

$$L_{max} = \binom{N}{2} = \frac{N(N-1)}{2}$$

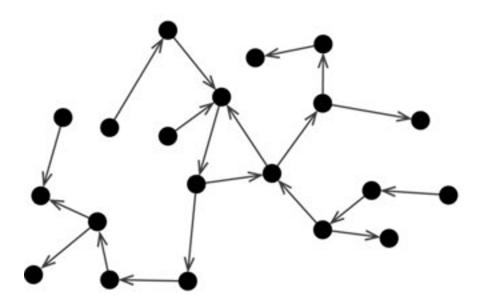
1 \

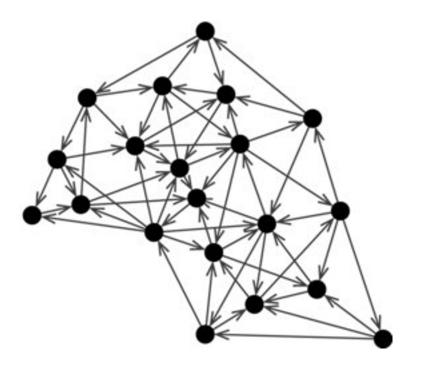
37/37

1 3 7

• The network is **sparse** if *d* << 1

Sparse network Dense network





Example: Facebook

Rough orders-of-magnitude approximations:

- *N* ≈ 10
- $L \approx 10^{\circ} \times N$
- $d \approx L / N_2 \approx 10^{\circ} N / N_2 \approx 10^{\circ} / 10^{\circ} = 10^{\circ}$
- Most (but not all) real-world networks are similarly sparse because the number of links scales proportionally to *N*, whereas the maximum scales with N²

Complex networks are sparse

• Theoretically
$$L_{\max} = \binom{N}{2} = \frac{N(N-1)}{2}$$

- Most real networks are sparse, i.e., $L \ll L_{\rm max}$

L is the number of links in the network, N is the number of nodes on it

How sparse are some networks?

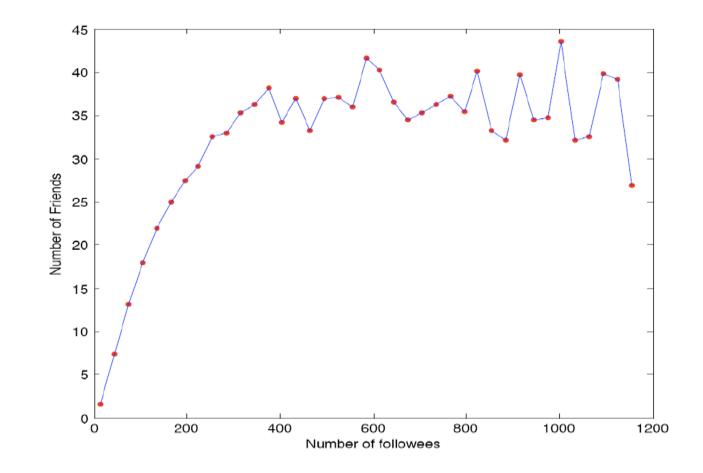
Network	 V 	E	Max E
Zachary's Karate Club	34	78	561
Game of Thrones	84	216	3496
US companies ownership	1351	6721	911K
Marvel comics	6K	167K	17M

https://github.com/chatox/networks-science-course/tree/master/practicum/data

Example: protein interaction network

(N=2K, L=3K)

Example: people you follow on Twitter (followees) vs people you have sent at least two messages to ("friends")



Huberman, B., Romero, D. M., & Wu, F. (2008). Social networks that matter: Twitter under the microscope. First Monday, 14(1).

Why are networks sparse?

- Different mechanisms, think about it from the node perspective:
 - How many items **could** the node be connected to
 - Would it be realistic to connect to a large fraction of them?
- In social networks, Dunbar's number ($\simeq 150$)

DVNBAR'S NUMBER: 150

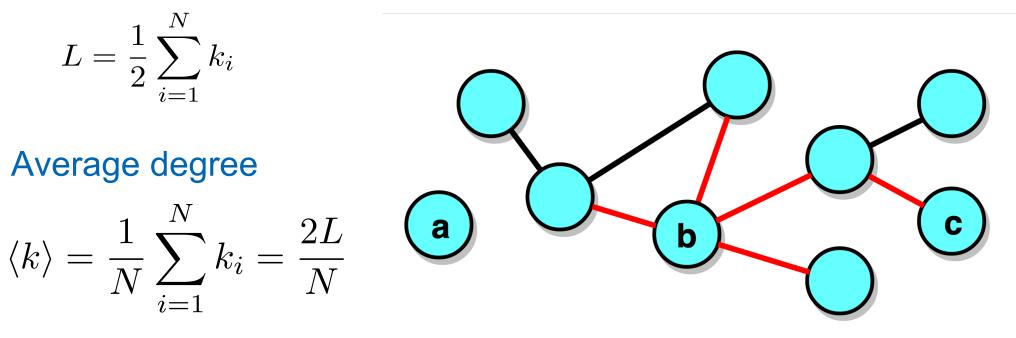
TYPICAL NUMBER OF PEOPLE WE CAN KEEP TRACK OF AND CONSIDER PART OF OUR ONGOING SOCIAL NETWORK **Sketchplanations**

Degree

Node i has degree k_i

This is the number of links incident on this node

The total number of links L is given by



Average degree & density $d = \frac{\langle k \rangle}{N-1} = \frac{\langle k \rangle}{k_{max}}$

- Let us revisit the Facebook example
- Since N is very large, N 1 can be approximated by N

$$d = \frac{\langle k \rangle}{N-1} \approx \frac{\langle k \rangle}{N} \approx \frac{10^3}{10^9} = 10^{-6}$$

In directed graphs

We distinguish in-degree from out-degree

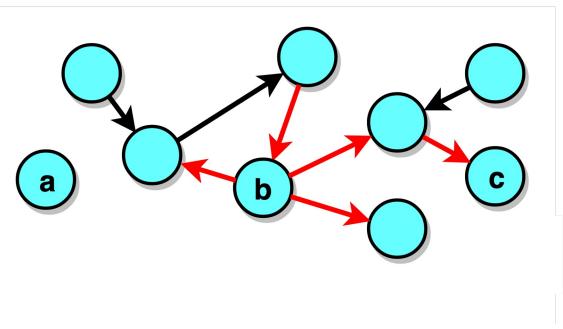
Incoming and outgoing links, respectively

Degree is the sum of both

$$k_i = k_i^{\rm in} + k_i^{\rm out}$$

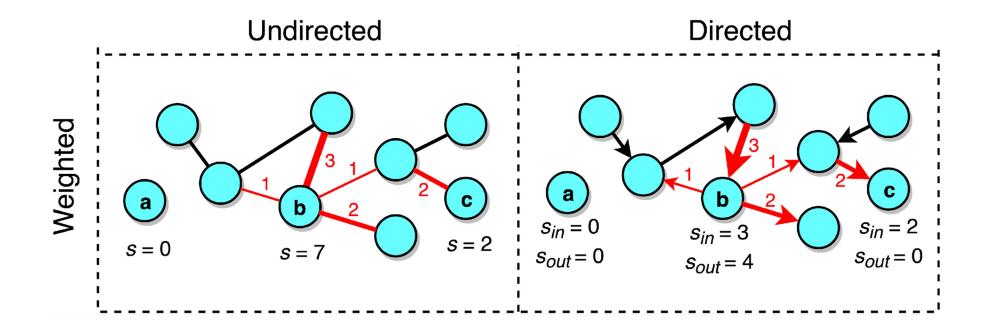
Counting total number of links:

$$L = \sum_{i=1}^{N} k_{i}^{\text{in}} = \sum_{i=1}^{N} k_{i}^{\text{out}}$$



In weighted graphs

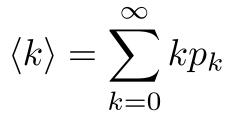
. We speak of "weighted degree" or "strength"



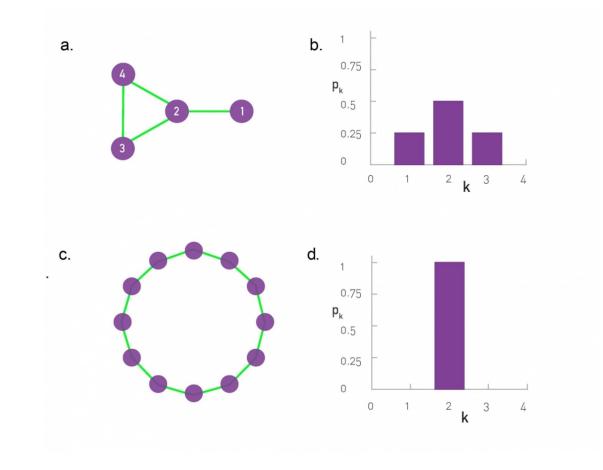
Degree distribution

- . If there are N_k nodes with degree k
- The degree distribution is given by $p_k = \frac{N_k}{N}$

. The average degree is then

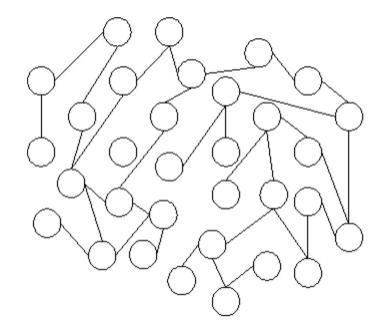


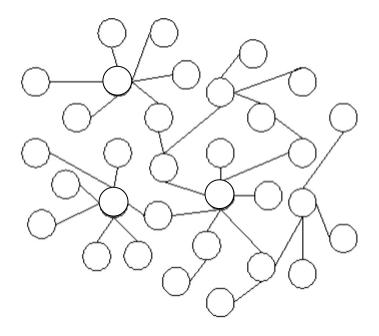
Degree distribution; two toy graphs



Exercise

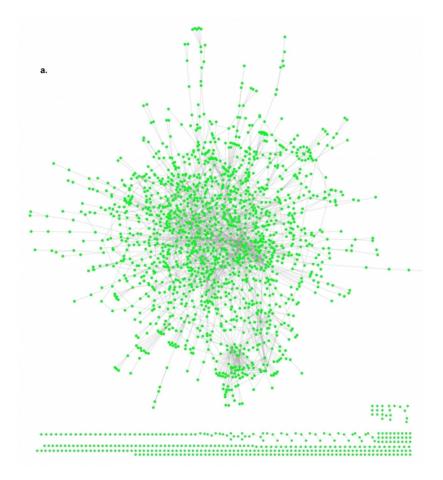
Draw the degree distribution of these graphs

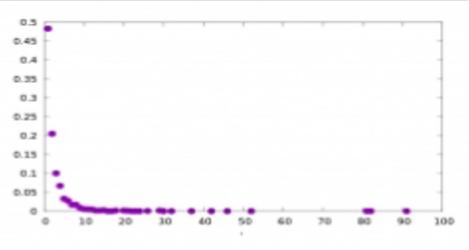




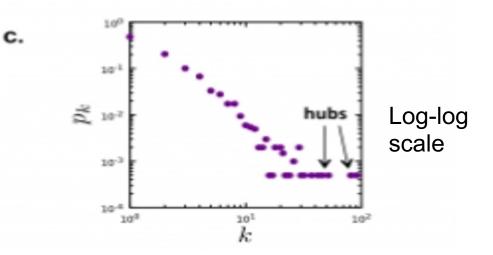
Spreadsheet links: https://upfbarcelona.padlet.org/chato/shyq9m6f2g2dh1bw

ő.



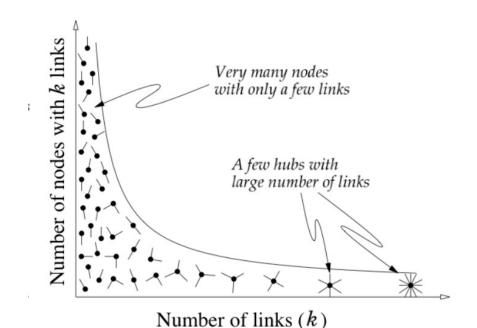


Linear scale



Degree distribution P(k)

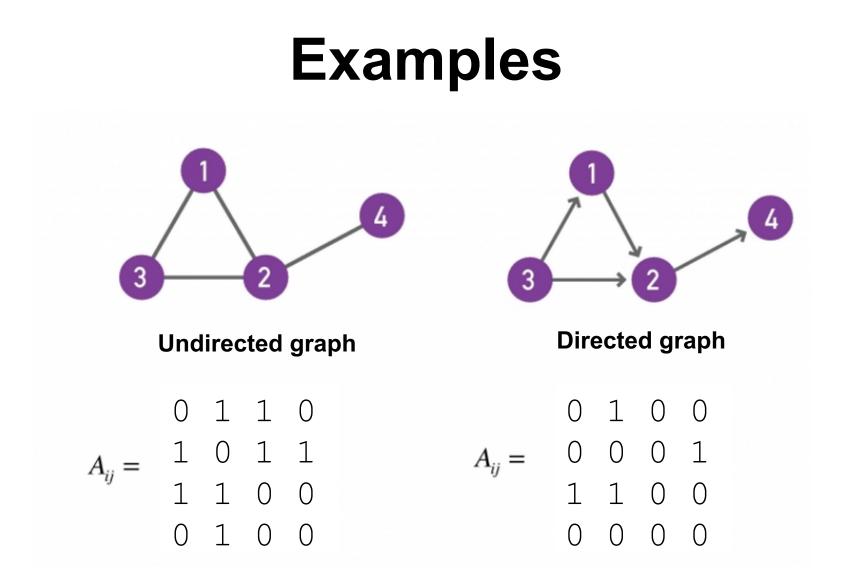
- Most important statistical property of networks
- Nodes with large degree = hubs, nodes with small degree = leaves
- When hubs are present, the P(k) is heterogeneous
- Most real (complex) networks are heterogeneous



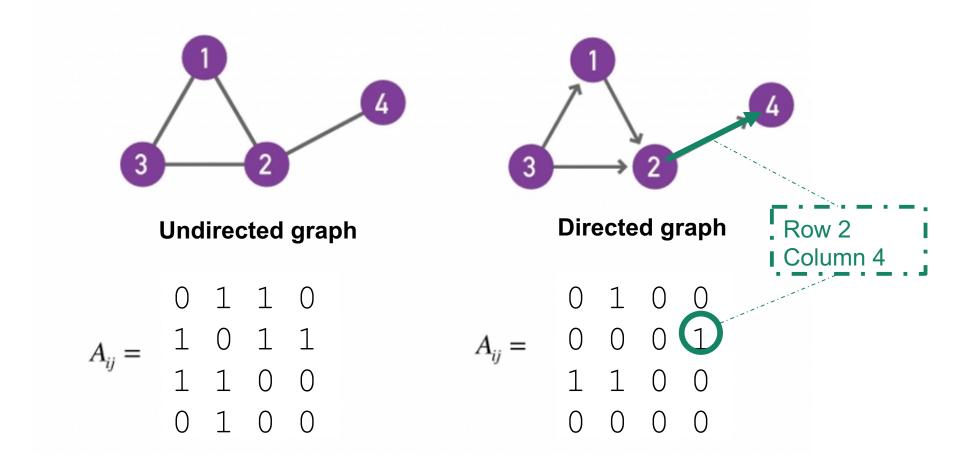
Adjacency matrix

- A is the adjacency matrix of G = (V, E) iff:
 - A has |V| rows and |V| columns

- . A_{ij} always means row i, column j
 - Sometimes Barabási's book has this wrong



A_{ij} always means row i, column j



Properties of adjacency matrices

- G is undirected \Leftrightarrow A is symmetric
- G has a self-loop
 ⇔ A has a non-zero element in the diagonal
- G is complete $\Leftrightarrow A_{ij} \neq 0$ (except if i=j)

Quick Exercise

• In terms of A, what is the expression for:

$$k_i^{\text{in}} =$$

 $k_i^{\text{out}} =$

Weighted networks

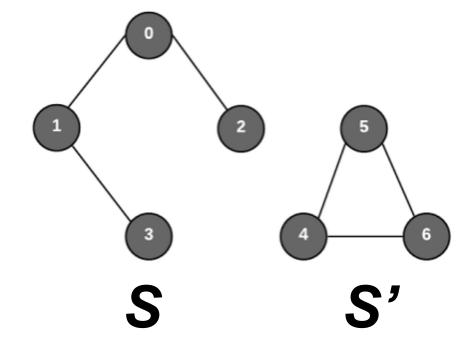
- Element w_{ij} indicates the weight of the link from node i to node j
- The link from node B to node C has a weight of 2
- Out-strenght (weighted out-degree): $s_i^{out} = \sum_j A_{ij}$
- In-strenght (weighted in-degree): $s_i^{in} = \sum_j A_{ji}$

• Total weight:
$$W = \sum_{i} s_{i}^{in} = \sum_{i} s_{i}^{out} = \sum_{ij} A_{ij}$$

If a graph is disconnected

Disconnected graphs have adjacency matrices with **block structure**

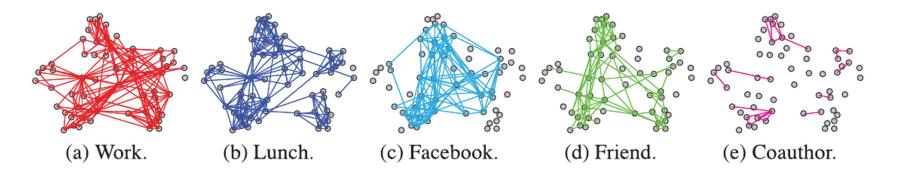
$$A = \begin{bmatrix} S & 0\\ 0 & S' \end{bmatrix}$$



Beyond simple graphs

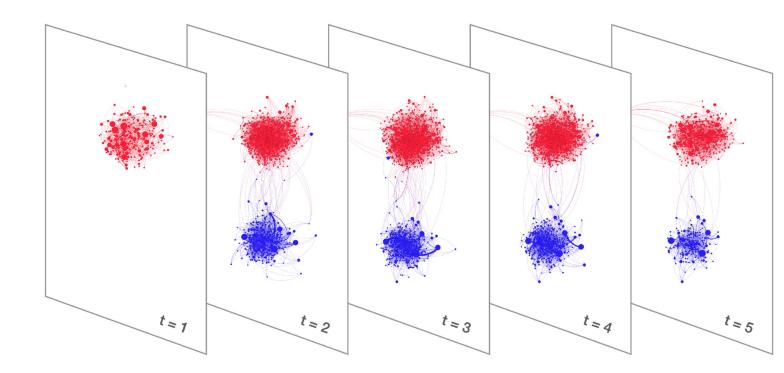
Some networks are multi-layer

- Multi-layer graphs have different edges over the same nodes
- Example graph of 61 employees of a university department, with links indicating: coworking, having lunch together, being connected on Facebook, being actual friends, or being co-authors



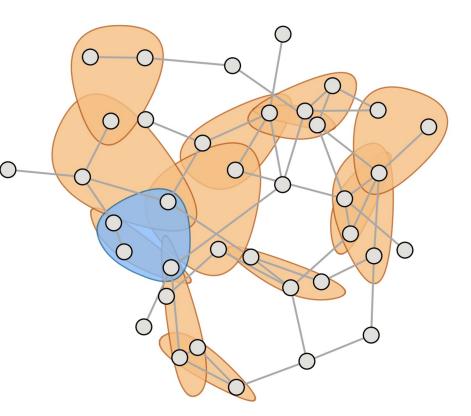
Some networks are time-evolving

Temporal, or "time-evolving" networks At each timestep there are new nodes and/or edges (and/or deletions)



Some networks are higher-order

Higher-order networks, or "hypergraphs": Hyper-links involve more than two nodes

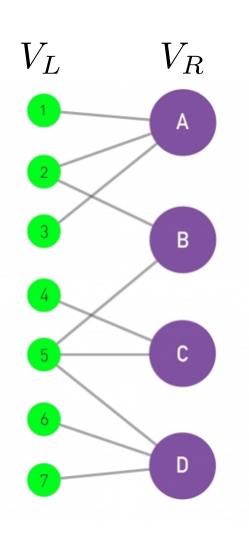


Source: Menczer, Fortunato, David: <u>A First Course on Networks Science</u>. Cambridge, 2020.

Some networks are **bi-partite**

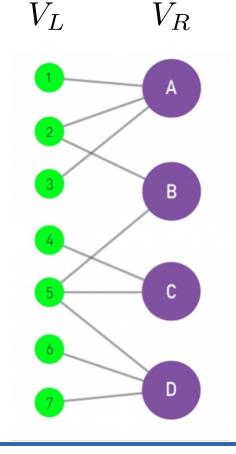
- . A bipartite graph is a graph
- G = (V,E) such that

 $V = V_L \cup V_R, V_L \cap V_R = \emptyset, E \subseteq V_L \times V_R$



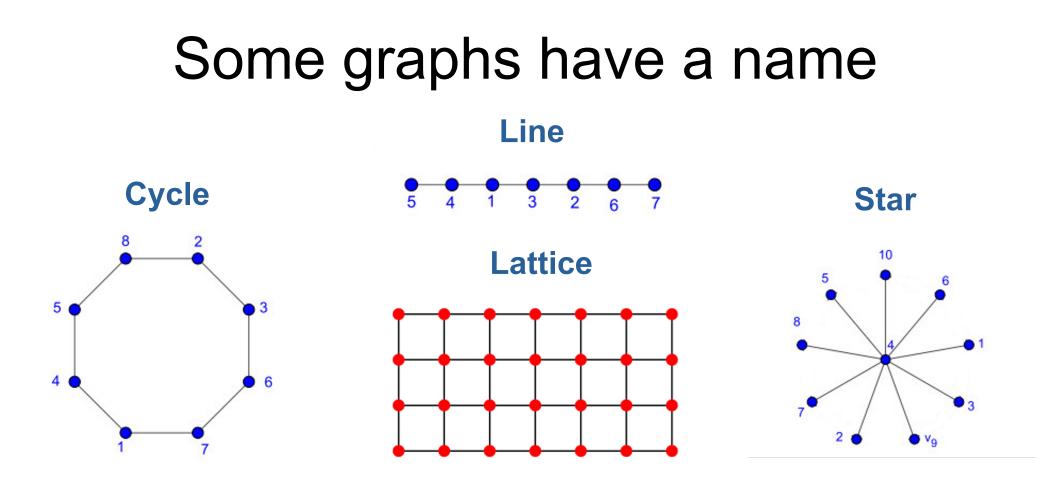
Exercise: project a bipartite network

Left projection: graph where nodes are 1, 2, ..., 7 and nodes are connected if they share a neighbor



Right projection: graph where nodes are A, B, ..., D and nodes are connected if they share a neighbor

network Tripartite



These are not complex networks!

Clique and Bi-partite clique

- A clique is a complete (sub) $E = (V \times V)$
- An n-clique is a complete graph of n nodes
- . A bi-partite clique is such that
 - $V = V_1 \cup V_2, V_1 \cap V_2 = \emptyset, E = (V_1 \times V_2)$
- A (n₁, n₂)-clique is a bipartite clique such that $|V_1| = n_1, |V_2| = n_2$

Summary

Things to remember

Definitions

- degree, in-degree, out-degree, strength
- time-evolving graph, multi-layer graph
- line graph, cycle graph, star graph, lattice, bi-partite graph, clique
- Writing the adjacency matrix of a graph, and drawing a graph given its adjacency matrix
- Plotting the degree distribution of a graph

Projecting a bi-partite graph

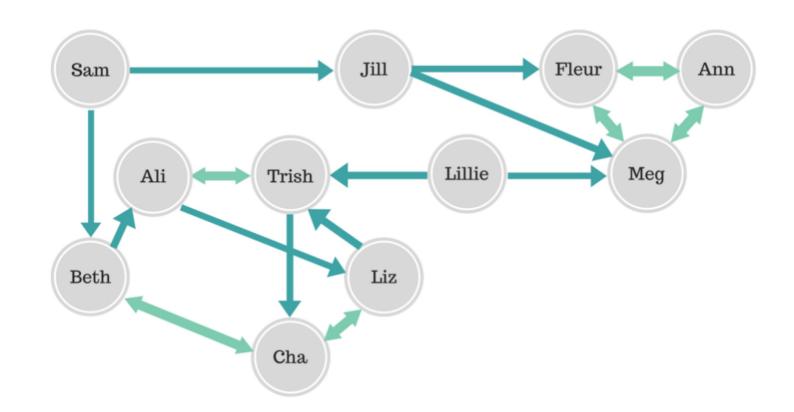
Sources

- A. L. Barabási (2016). Network Science Chapter 02
- URLs cited in the footer of specific slides

Practice on your own

Draw the indegree, outdegree, degree distribution

Write the adjacency matrix



https://www.6seconds.org/2017/07/03/20125/

Practice on your own

How do you call the subgraph induced by nodesets:

- {H, A, B}
- {G, H, D}
- {B, D, E, G}
- {A, B, D, E}

