Resit exam questions (2022-07-13)

1

Exam protocol

- Choose language es/ca/en
- We are recording now, the recording will stay in the platform with access only to me, me unless the university authorities request it for some reason
- Please place your mobile in airplane mode (unless you're using it for communicating with me)
- Please briefly show me the room where you are giving your exam
- Please briefly share with me ("present") your entire computer screen
- We will start with a topic you think you've studied more, then we will go back to slide #3 and roll the dice to determine each question; if we land on a question you've already answered or a non-question slide, I ask you the next one; if we get to the end we restart
- I'll ask you questions for 20 minutes starting now pick the initial topic please

Complex networks

What is a complex system?

What is a complex network?

Draw the adjacency matrix of this graph

Draw the graph corresponding to this adjacency matrix

-	0	1	2	3	4
0	0	2	3	0	0
1	2	0	15	2	0
2	3	15	0	0	13
3	0	2	0	0	9
4	0	0	13	9	0

How do you know from an adjacency matrix that a graph is undirected?

What is the maximum number of edges in an undirected graph of N nodes? Explain.

Sparsity and connectivity

Why do we say most real networks are sparse?

Sparsity and connectivity

What is the average distance in this graph?

Clustering coefficient

Compute the local clustering coefficient Of nodes 4, 5, 6, and 7.

Projections

Draw the left-projection ("u" side) and rightprojection ("o" side) of this graph.

Random networks

Consider an ER graph with 1,000 nodes.

What is the probability that a node in this graph has 0 links? Explain.

Random networks

Consider an ER graph with 1,000 nodes.

What is the expected distance <d> in this graph Explain.

Scale-free networks

What does it mean to be scale-free in a scale-free network?

Scale-free networks

Which **probability distribution** follows the degree of nodes in a scale-free network?

Scale-free networks

Consider a scale-free network of N=500,000 nodes and gamma=2.2.

What is the maximum degree x for which you would expect to find at least one node with degree x?

Preferential attachment

How is the exponent of the degree distribution in a graph generated using the Barabasi-Albert model (BA) affected by the number of nodes of the generated graph?

Preferential attachment

How is the exponent of the degree distribution in a graph generated using the Barabasi-Albert model (BA) affected by the number of edges ("m") that are added to the graph at each step?

Hubs and authorities

Execute some steps of HITS on this graph

Ĥ(1)	A(1)	Â(1)	H(2)	Ĥ(2)	A(2)	Â(2)
1						
1						
1						
1						
1						

PageRank

Execute some steps of **Simplified PageRank** <u>underlined italics</u> = normalized value

Closeness

What is the closeness of a node?

What is the harmonic closeness of a node?

Closeness

What is the closeness of node "b" in this graph?

Betweenness

Why is the betweenness of the blue node on the left 12?

Betweenness

Compute betweenness using the Brandes-Newman algorithm

Network flows

What are the min-cut and max-flow problems?

Dense sub-graphs

Dense sub-graphs

What is the k-core value for each node in this graph?

Dense sub-graphs

Describe two **density definitions** that are commonly used

Spreading phenomena

Under the linear threshold model:

(a) what value of X makes D and E infected?

(b) what value of X makes D infected but E not infected?

Spreading phenomena

Describe the independent cascade propagation model

Spreading phenomena Run the independent cascade model on this graph starting from the node marked *

Spreading phenomena

Describe a method to compute the influence f(S) of a node subset S of nodes of a graph, where f(S) is the number of nodes that will be infected, on expectation, if an infection starts simultaneously in all nodes of set S and follows the independent cascade model

Spreading phenomena

Again considering f(S) as the influence function, indicate the relationship (<, \leq , =, \geq , >) between

Indicate what the basic reproductive number R_0 means

Indicate its formula in a branching process

Describe the SIR model

What fraction of the nodes are infected at the end of a SIR infection process?

Describe the meaning of different variables in the following equations, which describe changes in the number of infected under a SIS process using conventional notation:

$$\frac{di(t)}{dt} = \beta \langle k \rangle i(t)(1 - i(t)) - \mu i(t)$$

Describe the meaning of different variables in the following equations, which describe a SIR process using conventional notation:

$$\frac{di(t)}{dt} = \beta \langle k \rangle i(t)(1 - r(t) - i(t)) - \mu i(t)$$
$$\frac{dr(t)}{dt} = \mu i(t)$$
$$\frac{ds(t)}{dt} = -\beta \langle k \rangle i(t)(1 - r(t) - i(t))$$