Resit exam questions (2021-07-15)

1

Exam protocol

- Choose language es/ca/en
- We are recording now, the recording will stay in the platform with access only to me, me unless the university authorities request it for some reason
- Please place your mobile in airplane mode (unless you're using it for communicating with me)
- Please briefly show me the room where you are giving your exam
- Please briefly share with me ("present") your entire computer screen
- We will start with a topic you think you've studied more, then we will go back to slide #3 and roll the dice to determine each question; if we land on a question you've already answered or a non-question slide, I ask you the next one; if we get to the end we restart
- I'll ask you questions for 20 minutes starting now pick the initial topic please

TT01 Complex networks

TT02. Complex networks

What is a complex system?

What is a complex network?

TT04. Graph theory basics

What is a **digraph**?

TT04. Graph theory basics

Draw the graph corresponding to this adjacency matrix

-	0	1	2	3	4
0	0	2	3	0	0
1	2	0	15	2	0
2	3	15	0	0	13
3	0	2	0	0	9
4	0	0	13	9	0

TT04. Graph theory basics

Write the adjacency matrix of this network:

What is a bi-partite graph?

Why do we say most real networks are sparse?

Draw the left- and right-projection of this bipartite graph

What is the **diameter** of this graph?

What is the average distance in this graph?

What is the sparsity of this graph *L* / *Lmax* ?

TT06. Clustering coefficient

What is a the (global) clustering coefficient of a graph?

Indicate what input parameters are needed and how one creates a random (ER) graph

What is the maximum degree in an ER graph of N nodes and edge probability p?

What is the expected number of links in an ER graph of N nodes and edge probability p?

What probability distribution follows the degree in an ER network?

If an ER graph has average degree <k> and N nodes, what is its linking probability p?

TT08. Properties of rand. networks Consider the average degree in a network <k>

What regime is the network in in the following cases? Explain what each regime means:

TT08. Properties of rand. networks

What is the average distance between two nodes in an ER network of N nodes and average degree <k>?

TT08. Properties of rand. networks

What is the minimum average degree *necessary* for a graph to be connected?

TT08. Properties of rand. networks

What is the expected clustering coefficient of a node in an ER network?

TT09. Scale-free networks

What does it mean to be scale-free in a scale-free network?

TT09. Scale-free networks

Which **probability distribution** follows the degree of nodes in a scale-free network?

TT09. Scale-free networks

Which networks do not exhibit a scale-free property?

TT10. Distances in scale-free networks

What is the difference in the average distance of networks having $2 < \gamma < 3$ and networks having $\gamma > 3$?

TT10. Distances in scale-free networks

What is the **friendship paradox**?

TT11 Preferential attachment

Explain the Uniform Random Attachment model and its differences with the BA model

TT11 Preferential attachment

What are the **input parameters** to the **BA** network model?

TT11 Preferential attachment

Describe two of the steps requiring randomization of the preferential attachment generation algorithm

Which degree distribution have graphs generated using the BA model?

Which nodes have larger degree in a BA graph, those who are created early or those who are created late? Why?

What is the power-law exponent γ of the degree distribution in a graph generated using the BA model?

Can this be changed within the BA model?

Describe how to create a graph using the **copy model**

TT14 Hubs and authorities

Execute some steps of HITS on this graph

Ĥ(2)

A(2)

Â(2)

TT15 PageRank Execute some steps of Simplified PageRank <u>underlined italics</u> = normalized value

TT15 PageRank

Why do we use PageRank instead of Simplified PageRank?

What is the problem with Simplified PageRank?

TT15 PageRank

In terms of the adjacency matrix of a graph, what is the PageRank of the nodes?

TT17 Closeness

What is the closeness of a node?

What is the harmonic closeness of a node?

TT17 Closeness

What is the closeness of one node in this graph?

What is the betweenness of a **node**?

Why is the betweenness of the blue node on the left 12?

Compute betweenness using the Brandes-Newman algorithm

Sketch a graph of N nodes in which a node, which you should mark with an asterisk (*) should have betweenness approximately equal to N and closeness approximately 1/N for large N. Explain.

TT19 Community structure

Give a example of a real-world network having two communities, and one having multiple communities

TT20 Network flows

What is the max-flow problem?

TT20 Network flows

What is the min-cut problem?

TT10 Network flows

Why do we say max flow and min cut are equivalent problems?

TT10 Network flows

Write the formulation of max flow as a linear system

TT10 Network flows

Write the formulation of min cut as a linear system

TT20 Network flows

Use the randomized algorithm we saw in class to find the min cut of this graph

Perform a k-core decomposition of this graph

Describe two **density definitions** that are commonly used

What is the density definition used in Golderg's construction?

Perform Charikar's algorithm on this graph; remember we measure density as |E|/|V|

TT24 Spreading phenomena

Describe the linear threshold propagation model

TT24 Spreading phenomena

Describe the independent cascade propagation model

TT24 Spreading phenomena Run the linear threshold model on this graph starting from the node marked *

TT24 Spreading phenomena Run the independent cascade model on this graph starting from the node marked *

Indicate what the basic reproductive number R_0 means

Indicate its formula in a branching process

Describe the SI model

What fraction of the nodes are infected at the end of a SI infection process?

Describe the SIS model

Does the SIS model reach a steady state? How is this steady state called?

Describe the SIR model

What fraction of the nodes are **recovered** at the end of a SIR infection process?

Describe the meaning of different variables in the following equations, which describe changes in the number of infected under a SIR process using conventional notation:

$$\frac{di(t)}{dt} = \beta \langle k \rangle i(t)(1 - r(t) - i(t)) - \mu i(t)$$

TT27 Epidemics on graphs

What is the characteristic time of an infection?

TT27 Epidemics on graphs

What is the characteristic time as N grows in a scale-free network with $\gamma < 3$?