An undergraduate course on data mining.
This project is maintained by chatox
Finding patterns in large datasets is one of the main tasks that a data scientist performs professionally. Data mining sits at the intersection of databases and statistics, and includes several steps from managing to pre-processing, cleaning, modeling, and performing inferences using data.
Data mining can be a challenging task. Data may not be formatted ideally for a purpose, or it may include noisy or missing data points. Datasets can be extremely large making even quadratic-time algorithms impractical. In many cases, the size of a dataset is unbounded and one needs to provide answers as new data elements keep arriving.
This course offers the students the possibility of learning fundamental data mining algorithms.
Basic competences
CB3. That the students have the ability of collecting and interpreting relevant data (normally within their study area) to issue judgements which include a reflection about relevant topics of social, scientific or ethical nature.
Transversal competences
CT3. Applying with flexibility and creativity the acquired knowledge and adapting it to new contexts and situations.
Specific competences
RA.CE7.2 Recognizing the statistic techniques applied to data mining.
RA.CE9.2 Recognizing and applying data mining techniques.
At the end of the course, the students would have acquired:
The course requires:
The practical part of the course will be delivered in Python, hence it is strongly recommended to have a background in Python.
There are 29 theory lectures (TT01-TT29) in this course.
The course is structured around theory classes in which the topics of the course are introduced.
In seminar and practice sessions, students can work individually or in small groups in performing network analysis tasks. At the end of each session, each student reports his/her findings individually with a 1-2 pages report.
There are three group projects (groups of two students), which integrate the techniques seen in the seminar sessions. These are accompanied by practice sessions for instructors to solve student questions regarding these projects.
See evaluation rules