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Mining Time Series:
Forecasting

Mining Massive Datasets
Materials provided by Prof. Carlos Castillo — https://chato.cl/teach
Instructor: Dr. Teodora Sandra Buda — https://tbuda.qithub.io/



https://chato.cl/teach
https://tbuda.github.io/

Sources

e Data Mining, The Textbook (2015) by Charu Aggarwal
(chapter 14)

e |Introduction to Time Series Mining (2006) tutorial by
Keogh Eamonn [alt. link]

e Time Series Data Mining (2006) slides by Hung Son
Nguyen


http://www.cs.ucr.edu/~eamonn/tutorials.html
http://didawiki.cli.di.unipi.it/lib/exe/fetch.php/dm/time_series_2017.pdf
https://www.mimuw.edu.pl/~son/datamining/datamining.htm

“IT’STOUGH TO MAKE
PREDICTIONS, ESPECIALLY

ABOUT THE FUTURE.”
—Yogi Berra

(A similar phrase is attributed to Niels Bohr, Danish physicist and winner of the Nobel Prize in 1922)



Forecastlng

(AR, MA, ARMA, ARIMA, .



Stationary vs Non-Stationary
processes

. Stationary process
- Parameters do not change over time

- E.g., White noise has zero mean, fixed variance, and
zero covariance between y and y,,, foranylag L

. Non-stationary process
- Parameters change over time

- E.g., price of oil, height of a child, glucose level of a
patient, ...



Stationary process

0 200 400 600 800 1000

Non-stationary process

Y
60 40 -20 0 20

-100
|
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By Protonk at English Wikipedia, CC BY-SA 3.0
https://commons.wikimedia.ora/w/index.php?curid=41600857



https://commons.wikimedia.org/w/index.php?curid=41600857

Strictly stationary time series

e A strictly stationary time series is one in which the
distribution of values in any time interval [a,b] is identical
to that in [a+L, b+L] for any value of time shift (lag) L

e |n this case, current parameters (e.g., mean) are good
predictors of future parameters



Differencing

. First order differencing
y; = Yi — Yi—1

In this first example, if the original
series is superlinear, the differenced
series is stationary or
non-stationary?
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Differencing (cont.)

. First order differencing
y; —Yi — Yi—1

In this second example, where the
series is linear, the differenced
series is stationary or
non-stationary?
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Other differencing operations

e Second-order differencing
Vi =Y — Yi1
=Y — 2 Yi—1+ Yi—2

e Seasonal differencing (m = 24 hours, 7 days, ...)
/
Yy = Yi — Yi—m

If you find a differencing that yields a stationary
series, the forecasting problem is basically solved.



Autoregressive model AR(p)

Covariance (y¢, Y1 1)

Autocorrelation(L) = Vari (Vo)
ariance; (y

e Autocorrelation lines in [-1,1]
e High absolute values = predictability

e Autoregressive model of order p, AR(p):

P
y?R:Zai'yt—i‘f’C‘Fﬁt
i=1



How to decide p? Autocorrelation plots
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(a) IBM stock What is a reasonable range (b) Sine wave
for p in these cases?




Finding coefficients and evaluating

. . p
o Eaph data point is a yAR — Z ;- Ys_i +c+ e
training element —

e C(oefficients found by least-squares regression

e Best models have R? — 1

Mean; (€2)

~ Variance;(y;)

R? =1




Exercise: simple auto-regressive
model

Create a simple auto-regressive
model for temperature in a city

Hourly temperature in Barcelona

Use two lags:

- 1 hour
- 24 hours

Compute the predicted series

20.0
2020-07-22 00:00 2020-07-24 00:00 2020-07-26 00:00 2020-07-28 00:00

26.0

—
e
@
=
=
=
e
<
=%
5
-

- (optionally: include it in the plot)

Timestamp

Compute the maximum error

Spreadsheet link: :
https://upfbarcelona.padlet.org/sandrabuda1/theory-exercises-tdmvfhddcnvfj5b8 |




Moving average model MA(q)

. Focus on the variations (shocks) of the model, i.e.,
places where change was unexpected

p
. AR(p) model: yAR — Z ;- Ys_i +c+ e

i=1
. MA(q) model: /

q
y}ngA:Zbi'Gt—rl-C-l-Gt
i=1



Autoregressive moving average model
ARMA(p,q)

. Combines both the autoregressive and the moving
average model

yrRMA Zaz Yt — @+sz €t—i T CT €

. Select small p, q, to av0|d overﬂttmg



Autoregressive integrated moving
average model ARIMA(p,q)

e Combines both the autoregressive and the moving
average model on differenced series

p q
g HMA = Z&z‘ (Yt—i — Yt—i—1) + Z bi - €t—i + ¢+ €
i=1 i=1

Note: this is an ARIMA(p,1,q) model as we're using first
order differencing

See also: ARIMA end-to-end project in Python by Susan Li (2018)



https://towardsdatascience.com/an-end-to-end-project-on-time-series-analysis-and-forecasting-with-python-4835e6bf050b

Event detection
(a simple framework)



Event: an important occurrence

sss

Magnitude Earthquake sequence in time BEYOND MEAT (BYN D)w
6.0 : . ; ‘ : ; ‘ x ~ 81.72 > 5.96 (7.97%)

Prev. Close 74.79 Market Cap (USD] 4118 o il
pen 75.93 Volume (Qty 171,919 7493 85.44
i
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Earthquake Droplet Sudden
or release price
aftershock change

Time Series Data Mining (2006) slides by Hung Son Nguyen
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| Apr23,2017 | Apr 24,2017



https://www.mimuw.edu.pl/~son/datamining/datamining.htm
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(a) Temperature (pipe rupture scenario)

g o o N N
o o oo o O

(o)
o

Example: pipe rupture
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(b) Pressure (pipe rupture scenario)



(But what if sensors fail? ...

. "Systems in general work poorly
or not at all” sv [MANII

. “In complex systems,
malfunction and even total
non-function may not be
detectable for long periods, if
ever”

A
ESPECIALLY
HOW

THEY

Gall, John. Systemantics: the underground text of systems lore: FA"_
how systems really work and especially how they fail. Ann Arbor, MI, 1975.



... Can we still detect failure?)
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(c) Temperature (sensor failure scenario) (d) Pressure (sensor failure scenario)



A general scheme for event detection in
multivariate time series

. Let T1, TZ, Tr be times at which an event has been observed
In the past

. (Offline) Learn coefficients a,da, ... a, to distinguish between
event times and non-event times

. (Online) Observe series and determine deviation of every
stream / at timestamp f as z/

d
. (Online) Compute composite alarm level 7, — Z Qo - z,?
1=1



Learning discrimination coefficients

a,,a,, ..., d

d

_ i

Average alarm level for events Ly = E :04@ ~t
i=1

1 T
event
:—E L
Q) (0417 704d) P T

Average alarm level for non-events
(we assume most points are non-events)

N
1
Qnormal(&h o ,ad) — N ;Zt



Learning discrimination coefficients
a,,d,, ..., a (cont.)

.
. For events QV"™(ay,...,aq) = ! Z Zi
r
1=1

N
1
normal
. For non-events Q (0417 e »@d) = N E Ly
i=1

. Maximize Qevent (ah L ,ad) — Qnormal(&l’ Cee de)

- d
. Subject to 5 —
g o = 1 Use any off-the-shelf iterative
i=1 optimization solver




Summary



Things to remember

. Time series forecasting
. Event detection



Exercises for TT27-TT29

. Data Mining, The Textbook (2015) by Charu
Aggarwal

- Exercises 14.10 — 1-6



