

Mining Time Series: Computing Similarity

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — <u>https://chato.cl/teach</u> Instructor: Dr. Teodora Sandra Buda — <u>https://tbuda.github.io/</u>

Sources

- . Data Mining, The Textbook (2015) by Charu Aggarwal (chapter 14)
- Introduction to Time Series Mining (2006) <u>tutorial</u> by Keogh Eamonn [<u>alt. link</u>]
- . Time Series Data Mining (2006) <u>slides</u> by Hung Son Nguyen

Using Euclidean distance on time series

Euclidean distance for time series

• Euclidean distance between series y and z

$$d(y, z) = \sqrt{\sum_{i=1}^{n} (y_i - z_i)^2}$$

- Sensitive to noise (see previous slides on how to fix this)
- Sensitive to different offsets, amplitudes, and trends

Offset translation: subtract the mean

 Series look different

 Series look similar

Amplitude scaling: normalize

• Standardization

$$y'_i = \frac{y_i - \operatorname{avg}(y)}{\operatorname{std}(y)}$$

. Range-based normalization

$$y'_i = \frac{y_i - \min(y)}{\max(y) - \min(y)}$$

Trend removal: remove linear trend

Find best straight line fitting data
 Subtract that line from the data

Example: clustering of time series after using smoothing, offset translation, amplitude scaling, and trend removal

Clustering using euclidean distance on original series

Clustering using euclidean distance on processed series

Dynamic time warping

Dynamic time warping

Nonlinear alignments are possible.

Slides on this section from: Introduction to Time Series Mining (2006) tutorial by Keogh Eamonn [alt. link]

Dynamic time warping example

Image credits: Lu et al. 2016

Computing DTW(X,Y)

1) Create a matrix M of size |X|×|Y|

2) Fill-in the matrix using dynamic programming

Source

$$M(i, j) = d(y_i, x_j) + \min\{M(i - 1, j - 1), M(i - 1, j), M(i, j - 1)\}$$

Computing DTW(X,Y) (cont.)

- 1) Create a matrix M of size |X|×|Y|
- 2) Fill-in the matrix using dynamic programming
- 3) Find lighter path
- 4) Cell (a,b) in path
 ⇒ points a,b
 should be aligned

	1	5	14	30	39	43	44	45	46	50
	1	2	6	15	19	20	20	20	20	21
	1	2	6	15	19	20	20	20	20	21
	2	1	2	6	7	7	8	9	10	10
	6	2	1	2	2	3	7	11	13	11
3	15	6	2	1	2	6	12	16	20	15
	19	7	2	2	1	2	6	10	14	15
	20	7	3	6	2	1	2	3	4	4
	20	8	7	12	6	2	1 -	1 -	1	2
5	20	9	11	16	10	3	1	1	1 -	2

Exercise: Dynamic Time Warping

- Compute DTW these two series
- Create the matrix using the formula (remember first row and first column will be different)

 Mark with color the minimum path

$$M(i,j) = d(y_i, x_j) + \min\{M(i-1, j-1), M(i-1, j), M(i, j-1)\}$$

Spreadsheet link: https://upfbarcelona.padlet.org/sandrabuda1/theory-exercises-tdmvfhddcnvfj5b8

Answer

Exercise from Ko et al. 2008

Faster DTW through size reduction

- . How to avoid having a large matrix?
- . Use less points
 - Sub-sample from original series
 - Bin the original series
 - If sampling was done, after doing DTW:
 - Interpolate warpings for intermediate points

Example: faster DTW through sub-sampling

How to avoid pathological warpings?

Assume original series cannot be so far apart

Summary

Things to remember

• Dynamic time warping

Solved exercise on DTW

- . Blue series:
 - $-1,\,6,\,2,\,3,\,0,\,9,\,4,\,3,\,6,\,3$
- . Red series:
 - -1, 3, 4, 9, 8, 2, 1, 5, 7, 3

- . First try to do it on your own, then you can watch the solution:
 - <u>https://youtu.be/_K1OsqCicBY?t=125</u>

Exercises for TT27-TT29

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises $14.10 \rightarrow 1-6$