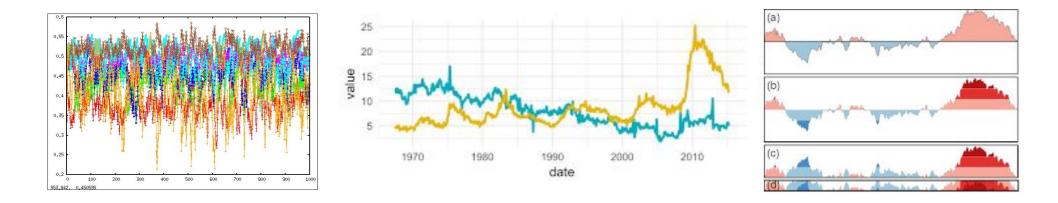
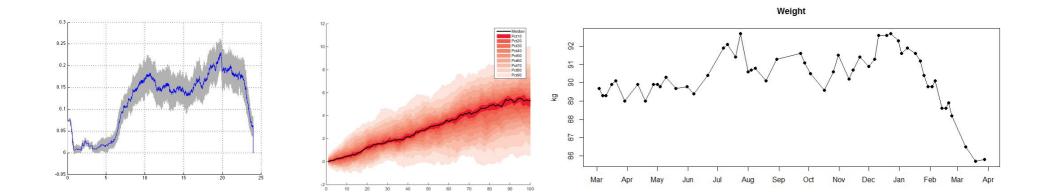


Mining Time Series

Mining Massive Datasets

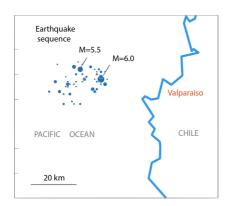

Materials provided by Prof. Carlos Castillo — <u>https://chato.cl/teach</u> Instructor: Dr. Teodora Sandra Buda — <u>https://tbuda.github.io/</u>

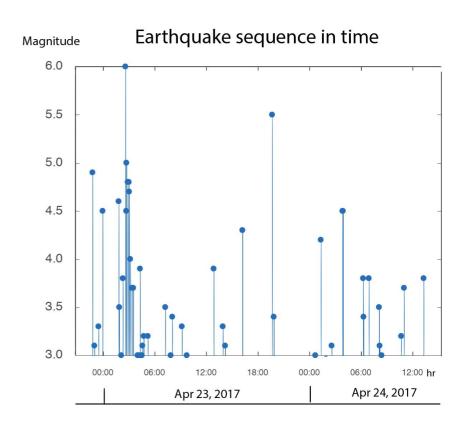
IF YOUR DATA HAS A TIME STAMP


YOU'RE A TIME SERIES ANALYST, HARRY

Sources

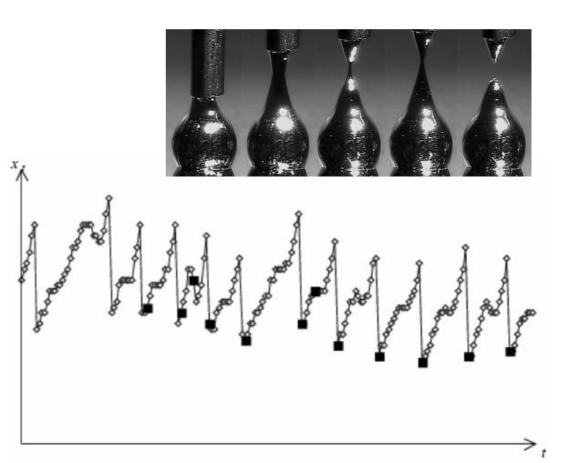
- . Data Mining, The Textbook (2015) by Charu Aggarwal (chapter 14)
- Introduction to Time Series Mining (2006) <u>tutorial</u> by Keogh Eamonn [<u>alt. link</u>]
- . Time Series Data Mining (2006) <u>slides</u> by Hung Son Nguyen




Why do we mine time series? Examples

Seismic data

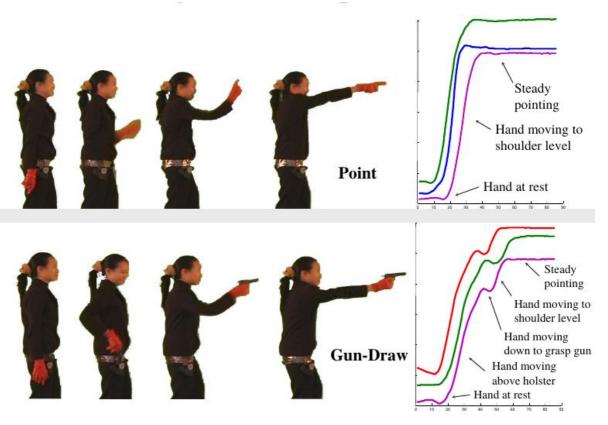
- Observations = earthquakes
- . Goal: characterize when peaks occur



Liquid metal droplets

- I = length of hot metal droplet
- = droplet release
 - (chaotic, noisy)

Goal: prediction of release



Stock prices

Video data / gestures

- . Series of angles of articulations in the body
- Temporal patterns can reveal gestures

Applications

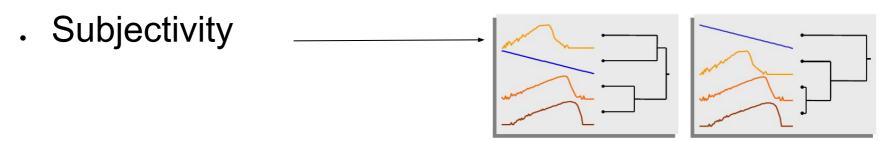
- . Clustering
- . Classification
- . Motif discovery
- . Event detection

- All require a reasonable definition of the similarity between two time series
- 2. All can be done in **real-time** or **retrospectively**

• • • •

Context vs Behavior

. Contextual attribute(s)


- $x(i) = t_i$ = timestamp is the typical one
- Sometimes other attributes providing context

. Behavioral attribute(s)

- $y^{i}(i)$ = temperature, angle, price, sensor reading, ...
- *j* ∈ 1 ... d

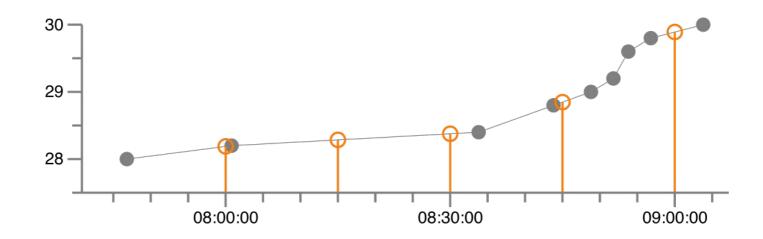
What are the difficulties?

- . High sampling rate of many series over extended periods of time means ...
 - Tons of data
 - Things are bound to fail at several points (missing data, noisy data)

Preparing a time series

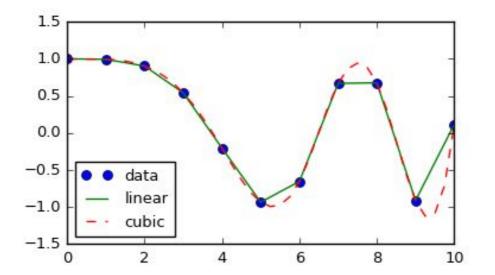
Notation: multivariate time series

- Length *n*, timestamps t_1, t_2, \dots, t_n
- Values at time $t_i : (y_i^1, y_i^2, ..., y_i^d)$
- . If series is univariate we drop the superscript


Missing values: linear interpolation

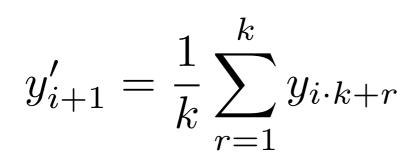
1.

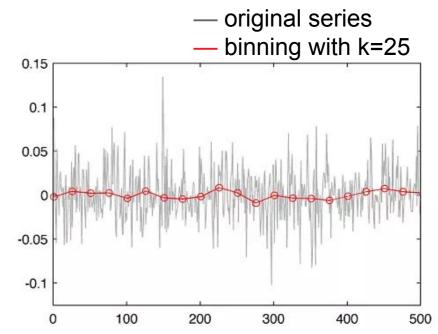
. \


• Let
$$t_i < t_x < t_j$$
 $y_x = y_i + \left(\frac{t_x - t_i}{t_j - t_i}\right) \cdot (y_j - y_i)$

• Example: make an irregular series regular

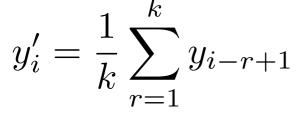
Missing values: splines


Cubic polynomials between $y_{i'}$, y_{i+1} that have the same slope at those points as the original curve.


SciPy interpolation example

Noise removal: binning

 Replace series by average of values in bins (subsequences) of length k

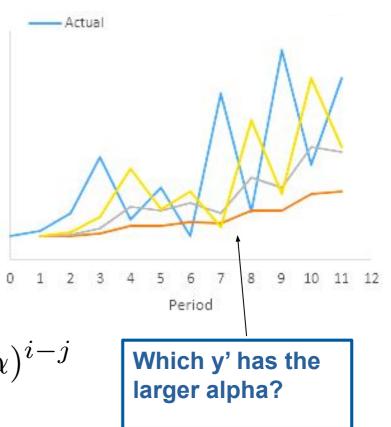


http://www.quantatrisk.com/2013/03/22/rebinning-of-financial-time-series/

Noise removal: moving average smoothing

• Equivalent to overlapping bins

- Larger k leads to smoother series, but losses more information
- Use smaller k for first k-1 items


Noise removal: exponential smoothing

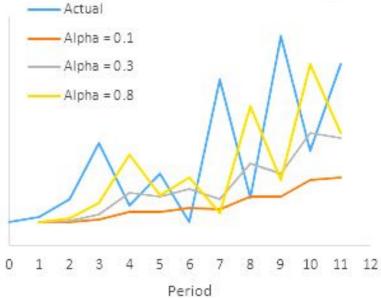
 Combine previously smoothed point with current point

$$y'_i = \alpha \cdot y_i + (1 - \alpha) \cdot y'_{i-1}$$

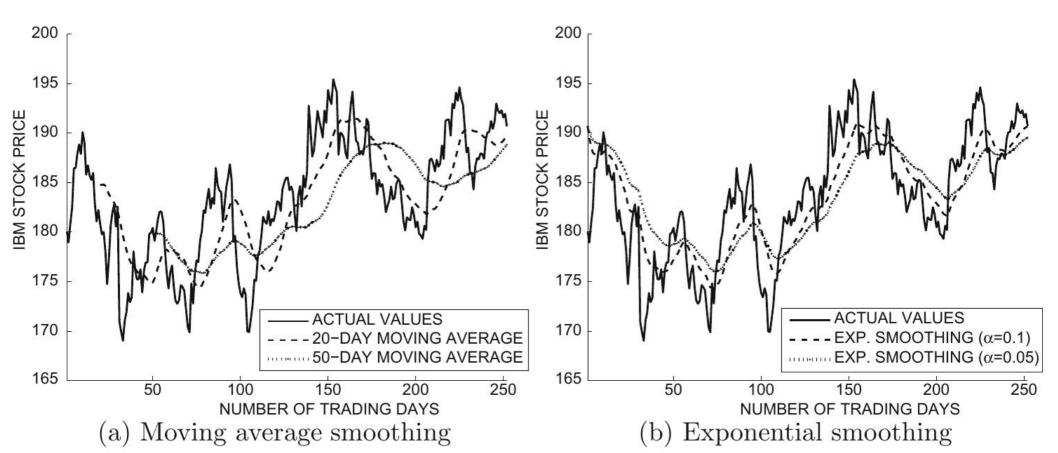
. Recursively substituting

$$y'_{i} = (1 - \alpha)^{i} \cdot y'_{0} + \alpha \sum_{j=1}^{i} y_{j} \cdot (1 - \alpha)^{i-j}$$

Noise removal: exponential smoothing


 Combine previously smoothed point with

current point


$$y'_i = \alpha \cdot y_i + (1 - \alpha) \cdot y'_{i-1}$$

Recursively substituting

$$y'_{i} = (1 - \alpha)^{i} \cdot y'_{0} + \alpha \sum_{j=1}^{i} y_{j} \cdot (1 - \alpha)^{i-j}$$

Moving average vs exponential smoothing

Exercise: smooth a time series

• Given the following series:

t	1	2	3	4	5	6	7	8	9	10
y(t)	2	4	12	2	1	-2	0	15	3	3
1. y'(t)										
2. y'(t)										

- 1. Moving average with k=3
- 2. Exponential average with alpha=0.5

Spreadsheet link: https://upfbarcelona.padlet.org/sandrabuda1/theory-exercises-tdmvfhddcnvfj5b8

Answer

• Given the following series:

t	1	2	3	4	5	6	7	8	9	10
y _t	2	4	12	2	1	-2	0	15	3	3
y,'	2	3	6	6	5	0.33	-0.33	4.33	6	7
y"	2	3	7.5	4.75	2.88	0.44	0.22	7.61	5.30	4.15

- y_t ': moving average with k=3
- y_t ": exponential average with alpha=0.5

Answer (code)

x = [2, 4, 12, 2, 1, -2, 0, 15, 3, 3]

```
k = 3
y = [0] * len(x)
for i in range(len(x)):
    s = 0
    c = 0
    for j in range(k):
        if i-j >= 0:
            s = s + x[i-j]
            c += 1
    y[i] = s / c if c > 0 else 0
```


Summary

Things to remember

- Series preparation
 - Interpolation
 - Smoothing

Exercises for TT27-TT29

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises $14.10 \rightarrow 1-6$