Data Streams: Estimating Moments

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo - https://chato.cl/teach Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

Sources

- Mining of Massive Datasets (2014) by Leskovec et al. (chapter 4)
- Slides part 1, part 2
- Tutorial: Mining Massive Data Streams (2019) by Michael Hahsler

Estimating moments

Moments of order k

- If a stream has A distinct elements, and each element has frequency m_{i}
- The $\mathrm{k}^{\text {th }}$ order moment of the stre $\sum m_{i}^{k}$
. The $0^{\text {th }}$ order moment is the number of distinct elements in the stream
. The $1^{\text {st }}$ order moment is the length of the stream

Moments of order k (cont.)

- The $\mathrm{k}^{\text {th }}$ order moment of the stream $\sum_{i} m_{i}^{k}$
- The $2^{\text {nd }}$ order moment is also known as the "surprise number" of a stream (large values = more uneven distribution)

$$
\sum m_{i}^{2}
$$

m_{i}	$\mathrm{i}=1$	$\mathrm{i}=2$	$\mathrm{i}=3$	$\mathrm{i}=4$	$\mathrm{i}=5$	$\mathrm{i}=6$	$\mathrm{i}=7$	$\mathrm{i}=8$	$\mathrm{i}=9$	$\mathrm{i}=10$	$\mathrm{i}=11$
$2^{\text {nd }}$ moment											
Seq1	10	9	9	9	9	9	9	9	9	9	9
Seq2	90	1	1	1	1	1	1	1	1	1	1

Method for second moment

. Assume (for now) that we know n, the length of the stream

- We will sample s positions
. For each sample we will have X.element and X.count
. We sample s random positions in the stream
- X.element $=$ element in that position, X. count $\leftarrow 1$
- When we see X.element again, X.count $\leftarrow X$. count +1
. Estimate second moment as $n(2 \times X$. count -1$)$

Method for second moment (cont.)

- Example: $a, b, c, b, d, a, c, d, a, b, d, c, a, a, b$
- $m_{a}=5, m_{b}=4, m_{c}=3, m_{d}=3$
- second moment $=5^{2}+4^{2}+3^{2}+3^{2}=59$
- Suppose we sample $s=3$ variables X_{1}, X_{2}, X_{3}
- Suppose we pick the $3^{\text {rd }}, 8^{\text {th }}$, and $13^{\text {th }}$ position at random
- X_{1}.element $=c, X_{2}$.element=d, X_{3}.element=a
- X_{1}.count $=3, X_{2}$.count $=2, X_{3}$.count=2 (we count forwards only!)
- Estimate $n(2 \times X$. count -1$)$, first estimate $=15(6-1)=75$, second estimate 15(4-1) $=45$, third estimate $15(4-1)=45$, average of estimates $=55 \sim 59$

Method for second moment (cont.)

. Example: $a, b, c, b, d, a, c, d, a, b, d, c, a, a, b$
. Suppose we pick the $3^{\text {rd }}, 8^{\text {th }}$, and $13^{\text {th }}$ position at random

- X_{1}. element $=c, X_{2}$. element $=d, X_{3}$. element $=a$
. X_{1}.count $=3, X_{2}$.count $=2, X_{3}$.count $=2$

Why this method works?

. Let e(i) be the element in position i of the stream
. Let $\mathrm{c}(\mathrm{i})$ be the number of times $\mathrm{e}(\mathrm{i})$ appears in positions $\mathrm{i}, \mathrm{i}+1, \mathrm{i}+2, \ldots, \mathrm{n}$
. Example: $a, b, c, b, d, a, c, d, a, b, d, c, a, a, b$ - $c(6)=$?

Why this method works?

- Let e(i) be the element in position i of the stream
- Let c(i) be the number of times e(i) appears in positions $\mathrm{i}, \mathrm{i}+1, \mathrm{i}+2, \ldots, \mathrm{n}$
- Example: $a, b, c, b, d, \underline{a}, c, d, \underline{a}, b, d, c, \underline{a}, \underline{a}, b$ $-c(6)=4$

Why this method works? (cont.)

- $\mathrm{c}(\mathrm{i})$ is the number of times $\mathrm{e}(\mathrm{i})$ appears in positions $\mathrm{i}, \mathrm{i}+1, \mathrm{i}+2$, ..., n
- $\mathrm{E}[n(2 \times X$. count -1$)]$ is the average of $n(2 c(i)-1)$ over all positions $i=1 \ldots n$

$$
\begin{aligned}
& E[n(2 \times X . \text { count }-1)]=\frac{1}{n} \sum_{i=1}^{n} n(2 c(i)-1) \\
& E[n(2 \times X . \text { count }-1)]=\sum_{i=1}^{n}(2 c(i)-1)
\end{aligned}
$$

Why this method works? (cont.)

$$
E[n(2 \times X . \text { count }-1)]=\sum_{i=1}^{n}(2 c(i)-1)
$$

- Now focus on element a that appears m_{a} times in the stream
- The last time a appears this term is $2 \mathrm{c}(\mathrm{i})-1=2 \times 1-1=1$
- Just before that, $2 \mathrm{c}(\mathrm{i})-1=2 \times 2-1=3$
- Until $2 m_{a}-1$ for the first time a appears
- Hence

$$
E[n(2 \times X . \text { count }-1)]=\sum_{a} 1+3+5+\cdots+\left(2 m_{a}-1\right)=\sum_{a} m_{a}^{2}
$$

For higher order moments
 ($\mathrm{v}=\mathrm{X} . \mathrm{count}$)

- For second order moment
- We use $n(2 v-1)=n\left(v^{2}-(v-1)^{2}\right)$
- For third order moment
- We use $n\left(3 v^{2}-3 v+1\right)=n\left(v^{3}-(v-1)^{3}\right)$
- For ${ }^{\text {th }}$ order moment
- We use $n\left(v^{k}-(v-1)^{k}\right)$

For infinite streams

- Use a reservoir sampling strategy
- If we want s samples
- Pick the first s elements of the stream setting X_{i}.element \leftarrow $e(i)$ and X_{i}.count $\leftarrow 1$ for $\mathrm{i}=1$...s
- When element $n+1$ arrives
- Pick X_{n+1}.element with probability $s /(n+1)$, evicting one of the existing elements at random and setting X.count $\leftarrow 1$
- As before, probability of an element is s / n

Summary

Things to remember

- $k^{\text {th }}$ order moments of a stream

Exercises for TT22-T26

- Mining of Massive Datasets (2014) by Leskovec et al.
- Exercises 4.2.5
- Exercises 4.3.4
- Exercises 4.4.5
- Exercises 4.5.6

