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Data Streams:
Probabilistic Counting

Mining Massive Datasets
Materials provided by Prof. Carlos Castillo — https://chato.cl/teach
Instructor: Dr. Teodora Sandra Buda — https://tbuda.qithub.io/



https://chato.cl/teach
https://tbuda.github.io/

Sources

. Mining of Massive Datasets (2014) by Leskovec
et al. (chapter 4)

- Slides part 1, part 2

. Tutorial: Mining Massive Data Streams (2019)
by Michael Hahsler



http://www.mmds.org/mmds/v2.1/ch04-streams1.pdf
http://www.mmds.org/mmds/v2.1/ch04-streams2.pdf
https://michael.hahsler.net/SMU/EMIS8331/slides/datastream/datastream.pdf

Probabilistic counting



Counting fishes with pebbles

. Normally, to count with pebbles, you
add one pebble every time you see

an event ﬂ ‘

. How do you extend this method to @
count up to 1000 fishes with 10
pebbles?

. Assume you have access to a
random number generator but not to
an abacus for ... reasons




. How to count up to 1000 fishes with 10

. Every time you see a fish:

Answer

pebbles?

- generate a random integer between 1 and
100

- Add one pebbile if that numberis 1 (or any

fixed value) AT abie(
. Return 100 x number of pebbles as an @@ie=< g
approximation e

e W



. Return estimate n’' = 2*+1

Morris’ probabilistic counting (1977)

’ X N O exact n
. For each of the n events:
- X « x + 1 with probability (1/2)* , esimate

counter x

. Counter x needs only log,(n) bits

Source: Slides by Nick Duffield



http://cesg.tamu.edu/wp-content/uploads/2014/09/ECEN689-lec11.pdf

n (actual value)

. Simulation results \
by Flajolet (1985)

:—’J— n’ (approximation)

—




Morris’ algorithm provides
an unbiased estimator

Init x=0, let p_ =2, estimate n' =2* - 1
n=1

- before:x=0p,=1;

- prob. 1: x — 1

- estimaten'=2"-1=1=n
n=2

- before:x=1;p, =12

- prob. Va: xstaysat 1;n'=2" -1 =1

- prob.%:x—2.n"=2%2-1=3

- E[N]=12x1+12x3=2=n
Source: Slides by Nick Duffield



http://cesg.tamu.edu/wp-content/uploads/2014/09/ECEN689-lec11.pdf

Morris’ algorithm provides
an unbiased estimator (cont.)

Let X(n) denote random counter x after nt" arrival
Initialize X(0) = O; increment w.p. p, = 2
Estimate n’ = 2X(n) — 1

E[2A0] Sy g PIX(OR) S]] B[220 | X(m1) =] ]
n1 PIIX(n-1) =] (py 2" + (1- py) 2))
..... n1 PIIX(n-1) =j1(2 + 1)

= E[QX(n-1)] + 1

.....

lterating: E[2X(M] = E[2XO] +n=1+n

Therefore: E[2X(M) — 1] =n | | |
Source: Slides by Nick Duffield



http://cesg.tamu.edu/wp-content/uploads/2014/09/ECEN689-lec11.pdf

Flajolet-Martin algorithm
for distinct counting



Motivating example
how many neighbors?

. Let n(u,h) be the number of nodes reachable through a
path of length up to h from node u

. Naive method

- Maintain a set for each node u, initialize S(u) = {u}
- Repeat h times:

S(u) = S(u) U L S(v)

- Answer n(u’h) = |S(u)| v neighbor of u



What is the problem with this method?

. Let n(u,h) be the number of nodes reachable
through a path of length up to h from node u

. Nalve method
- Maintain a set for each node u, initialize S(u) = {u}
- Repeat h times:

S(u) = S(u) U L) S
v neighbor of u

- Answer n(u,h) = |S(u)|



Let’'s look at each node

. We will receive a stream of items

- Our neighbors at distance <= h

- Repeated many times because of loops

. We want to use a small amount of memory

. We don’t care which items are in the stream

. We just want to know how many are distinct



Flajolet-Martin algorithm
for counting distinct elements

. For every element u in the stream, compute hash
h(u)

. Let r(u) be the number of trailing zeros in hash
value

- Example: if h(u) = 001011101000 then r(u) = 3

. What is the probability of having
r(u)=17 r(u)=27 r(u)=37?



Flajolet-Martin algorithm
for counting distinct elements

. For every element u in the stream, compute hash
h(u)

. Let r(u) be the number of trailing zeros in hash
value

- Example: if h(u) = 001011101000 then r(u) = 3
. Maintain R = max r(u) seen so far

. Output 27 as an estimator of the number of distinct
elements seen so far



Flajolet-Martin algorithm
(intuition)

Let r(u) be the number of trailing zeros in hash value, keep R = max r(u),
output 2f as estimate
Repeated items don’t change our estimates because their hashes are equal

About 7z of distinct items hash to *******(
- To actually see a *******0, we expect to wait until seeing 2 distinct items

About % of distinct items hash to ******00
- To actually see a ******00, we expect to wait until seeing 4 items

If we actually saw a hash value of ***000...0 (having R trailing zeros) then on
expectation we saw 2F different items

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org/



http://www.mmds.org/

Flajolet-Martin, correctness proof

. Let m be the number of distinct elements
. Let z(r) be the probability of finding a tail of r zeroes

. We will prove that
-z(r) > 1ifm>2
- zZ(r) - 0ifFm K 2
. Hence 2"should be around m

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org/



http://www.mmds.org/

Flajolet-Martin, correctness proof (cont.)

. Probability a hash value ends in r zeroes = (1/2)

- Assuming h(u) produces values at random

- Prob. random binary ends in r zeroes = (1/2)

. Probability of seeing m distinct elements and NOT
seeing a tail of r zeroes = (1 - (%))™

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org/



http://www.mmds.org/

Flajolet-Martin, correctness proof (cont.)

» Probability of seeing m distinct elements and NOT seeing a
tail of r zeroes = (1 - (15))"

« Remember (1-¢)"¢ = 1/e for small €

. Hence

(-(23)) =0-0) O~ @

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org/



http://www.mmds.org/

Flajolet-Martin, correctness proof (cont.)

. Probabillity of seeing m distinct elements and NOT
seeing a tail of r zeroes ~ (1) (#)

. IFm > 2', this tends to 0
- We almost certainly will see a tail of r zeroes

. IFm < 2, this tends to 1
- We almost certainly will not see a tail of r zeroes

. Hence, 2" should be around m

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org/



http://www.mmds.org/

Flajolet-Martin: increasing precision

. |ldea: repeat many times or compute in parallel for
multiple hash functions

. How to combine?

- Average? E[27 is infinite, extreme values will skew the number
excessively

- Median? 2" is always a power of 2

. Solution: group hash functions, take median of values
obtained in each group, then average across groups



Let’'s go back to counting neighbors

Naive method:

Maintain a set for each node u, initialize S(u) = {u}

Repeat h times: S(u) =Sw)u

v neighbor of u

Answer n(u,h) = |S(u)|

Palmer, C. R., Gibbons, P. B., & Faloutsos, C. (2002, July). ANF: A fast
and scalable tool for data mining in massive graphs. In Proc. KDD.

ANF method:

// Set M(z,0) = {z}
FOR each node z DO
M(z,0) = concatenation of k£ bitmasks ‘
each with 1 bit set (P(bit i) = .5**1)
FOR each distance h starting with 1 DO
FOR each node x DO M (z,h) = M(x,h — 1)
// Update M (x, h) by adding one step
FOR each edge (z,y) DO
M(z,h) = (M (z,h) BITWISE-OR M(y,h — 1))
// Compute the estimates for this h
FOR each node z DO R
Individual estimate I N (z, h) = (2%)/.77351
where b is the average position of the least zero bits
in the k£ bitmasks



Example of another variant of
the same type of algonthm

More repetitions of the
algorithm yield better
precision

Becchetti, Luca, Carlos Castillo, Debora Donato, Stefano Leonardi, and
Ricardo Baeza-Yates. "Using rank propagation and probabilistic counting
for link-based spam detection." In Proc. of WebKDD, 2006.

x 10°
D .......... —Observed in 400 nodes
5 : ——Bit propagation 32 bits
10k N —e—Bit propagation 64 bits

1 5 10 15 20 25

Distance



Summary



Things to remember

. Probabilistic counting algorithms:

- Morris
- Flajolet-Martin



Exercises for TT22-T26

. Mining of Massive Datasets (2014) by Leskovec et al.

- Exercises 4.2.5
- Exercises 4.3.4
- Exercises 4.4.5

- Exercises 4.5.6



