
Data Streams:
Probabilistic Counting

Mining Massive Datasets
Materials provided by Prof. Carlos Castillo — https://chato.cl/teach
Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

https://chato.cl/teach
https://tbuda.github.io/

Sources

● Mining of Massive Datasets (2014) by Leskovec
et al. (chapter 4)
− Slides part 1, part 2

● Tutorial: Mining Massive Data Streams (2019)
by Michael Hahsler

http://www.mmds.org/mmds/v2.1/ch04-streams1.pdf
http://www.mmds.org/mmds/v2.1/ch04-streams2.pdf
https://michael.hahsler.net/SMU/EMIS8331/slides/datastream/datastream.pdf

Probabilistic counting

Counting fishes with pebbles
● Normally, to count with pebbles, you

add one pebble every time you see
an event

● How do you extend this method to
count up to 1000 fishes with 10
pebbles?

● Assume you have access to a
random number generator but not to
an abacus for … reasons

Answer
● How to count up to 1000 fishes with 10

pebbles?
● Every time you see a fish:

− generate a random integer between 1 and
100

− Add one pebble if that number is 1 (or any
fixed value)

● Return 100 x number of pebbles as an
approximation

Morris’ probabilistic counting (1977)
● x ← 0
● For each of the n events:

− x ← x + 1 with probability (1/2)x

● Return estimate n’ = 2x+1

● Counter x needs only log2(n) bits

Source: Slides by Nick Duffield

http://cesg.tamu.edu/wp-content/uploads/2014/09/ECEN689-lec11.pdf

● Simulation results
by Flajolet (1985)

n’ (approximation)

n (actual value)

Morris’ algorithm provides
an unbiased estimator

● Init x=0, let px = 2-x, estimate n’ = 2x - 1

● n = 1
− before: x = 0 p0 = 1;
− prob. 1: x → 1
− estimate n’ = 21 – 1 = 1 = n

● n = 2
− before: x = 1; p1 = 1⁄2
− prob. ½: x stays at 1; n’ = 21 – 1 = 1
− prob. ½: x → 2. n’ = 22 -1 = 3
− E[n’] = 1⁄2 x 1 + 1⁄2 x 3 = 2 = n

Source: Slides by Nick Duffield

http://cesg.tamu.edu/wp-content/uploads/2014/09/ECEN689-lec11.pdf

Morris’ algorithm provides
an unbiased estimator (cont.)

Source: Slides by Nick Duffield

http://cesg.tamu.edu/wp-content/uploads/2014/09/ECEN689-lec11.pdf

Flajolet-Martin algorithm
for distinct counting

Motivating example
how many neighbors?

● Let n(u,h) be the number of nodes reachable through a
path of length up to h from node u

● Naïve method
− Maintain a set for each node u, initialize S(u) = {u}
− Repeat h times:

− Answer n(u,h) = |S(u)|

What is the problem with this method?

● Let n(u,h) be the number of nodes reachable
through a path of length up to h from node u

● Naïve method
− Maintain a set for each node u, initialize S(u) = {u}
− Repeat h times:

− Answer n(u,h) = |S(u)|

Let’s look at each node

● We will receive a stream of items
− Our neighbors at distance <= h

− Repeated many times because of loops

● We want to use a small amount of memory

● We don’t care which items are in the stream

● We just want to know how many are distinct

Flajolet-Martin algorithm
for counting distinct elements

● For every element u in the stream, compute hash
h(u)

● Let r(u) be the number of trailing zeros in hash
value
− Example: if h(u) = 001011101000 then r(u) = 3

● What is the probability of having
r(u)=1? r(u)=2? r(u)=3?

Flajolet-Martin algorithm
for counting distinct elements

● For every element u in the stream, compute hash
h(u)

● Let r(u) be the number of trailing zeros in hash
value
− Example: if h(u) = 001011101000 then r(u) = 3

● Maintain R = max r(u) seen so far
● Output 2R as an estimator of the number of distinct

elements seen so far

Flajolet-Martin algorithm
(intuition)

● Let r(u) be the number of trailing zeros in hash value, keep R = max r(u),
output 2R as estimate

● Repeated items don’t change our estimates because their hashes are equal

● About ½ of distinct items hash to *******0
− To actually see a *******0, we expect to wait until seeing 2 distinct items

● About ¼ of distinct items hash to ******00
− To actually see a ******00, we expect to wait until seeing 4 items

● …

● If we actually saw a hash value of ***000...0 (having R trailing zeros) then on
expectation we saw 2R different items

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org/

http://www.mmds.org/

Flajolet-Martin, correctness proof

● Let m be the number of distinct elements
● Let z(r) be the probability of finding a tail of r zeroes
● We will prove that

− z(r) → 1 if m ≫ 2r

− z(r) → 0 if m ≪ 2r

● Hence 2r should be around m

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org/

http://www.mmds.org/

Flajolet-Martin, correctness proof (cont.)

● Probability a hash value ends in r zeroes = (1/2)r

− Assuming h(u) produces values at random

− Prob. random binary ends in r zeroes = (1/2)r

● Probability of seeing m distinct elements and NOT
seeing a tail of r zeroes = (1 – (½)r)m

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org/

http://www.mmds.org/

Flajolet-Martin, correctness proof (cont.)

● Probability of seeing m distinct elements and NOT seeing a
tail of r zeroes = (1 – (½)r)m

● Remember (1-ε)1/ε ≃ 1/e for small ε

● Hence

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org/

http://www.mmds.org/

Flajolet-Martin, correctness proof (cont.)

● Probability of seeing m distinct elements and NOT
seeing a tail of r zeroes

● If m ≫ 2r, this tends to 0
− We almost certainly will see a tail of r zeroes

● If m ≪ 2r, this tends to 1
− We almost certainly will not see a tail of r zeroes

● Hence, 2r should be around m

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org/

http://www.mmds.org/

Flajolet-Martin: increasing precision
● Idea: repeat many times or compute in parallel for

multiple hash functions
● How to combine?

− Average? E[2r] is infinite, extreme values will skew the number
excessively

− Median? 2r is always a power of 2

● Solution: group hash functions, take median of values
obtained in each group, then average across groups

Let’s go back to counting neighbors

Palmer, C. R., Gibbons, P. B., & Faloutsos, C. (2002, July). ANF: A fast
and scalable tool for data mining in massive graphs. In Proc. KDD.

Naïve method:
Maintain a set for each node u, initialize S(u) = {u}
Repeat h times:

Answer n(u,h) = |S(u)|
ANF method:

Example of another variant of
the same type of algorithm

● More repetitions of the
algorithm yield better
precision

Becchetti, Luca, Carlos Castillo, Debora Donato, Stefano Leonardi, and
Ricardo Baeza-Yates. "Using rank propagation and probabilistic counting
for link-based spam detection." In Proc. of WebKDD, 2006.

Summary

Things to remember

● Probabilistic counting algorithms:
− Morris
− Flajolet-Martin

Exercises for TT22-T26

● Mining of Massive Datasets (2014) by Leskovec et al.
− Exercises 4.2.5

− Exercises 4.3.4

− Exercises 4.4.5

− Exercises 4.5.6

