Data Streams:

Probabilistic Counting

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo - https://chato.cl/teach Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

Sources

- Mining of Massive Datasets (2014) by Leskovec et al. (chapter 4)
- Slides part 1, part 2
- Tutorial: Mining Massive Data Streams (2019) by Michael Hahsler

Probabilistic counting

Counting fishes with pebbles

- Normally, to count with pebbles, you add one pebble every time you see an event
- How do you extend this method to
 count up to 1000 fishes with 10 pebbles?
- Assume you have access to a random number generator but not to an abacus for ... reasons

Answer

. How to count up to 1000 fishes with 10 pebbles?

- Every time you see a fish:
- generate a random integer between 1 and 100
- Add one pebble if that number is 1 (or any fixed value)
- Return 100 x number of pebbles as an approximation

Morris' probabilistic counting (1977)

. $\mathrm{x} \leftarrow 0$
. For each of the n events:
$-x \leftarrow x+1$ with probability $(1 / 2)^{x}$
. Return estimate $n^{\prime}=2^{x}+1$

- Counter x needs only $\log _{2}(n)$ bits

. Simulation results by Flajolet (1985)

Morris' algorithm provides an unbiased estimator

- Init $x=0$, let $p_{x}=2^{-x}$, estimate $n^{\prime}=2^{x}-1$
- $\mathrm{n}=1$
- before: $x=0 p_{0}=1$;
- prob. 1: $x \rightarrow 1$
- estimate $n^{\prime}=2^{1}-1=1=n$
- $\mathrm{n}=2$
- before: $x=1 ; p_{1}=1 / 2$
- prob. $1 / 2$: x stays at $1 ; n^{\prime}=2^{1}-1=1$
- prob. $1 / 2: x \rightarrow 2$. $n^{\prime}=2^{2}-1=3$
- $E\left[n^{\prime}\right]=1 / 2 \times 1+1 / 2 \times 3=2=n$

Morris' algorithm provides an unbiased estimator (cont.)

Let $X(n)$ denote random counter x after $n^{\text {th }}$ arrival Initialize $X(0)=0$; increment w.p. $p_{x}=2^{-x}$
Estimate n' $=2^{\mathrm{X}(\mathrm{n})}-1$

$$
\begin{aligned}
E\left[2^{X(n)}\right] & =\sum_{j=1, \ldots, n-1} \operatorname{Pr}[X(n-1)=j] E\left[2^{X(n)} \mid X(n-1)=j\right] \\
& =\Sigma_{j=1, \ldots, n-1} \operatorname{Pr}[X(n-1)=j]\left(p_{j} 2^{j+1}+\left(1-p_{j}\right) 2^{j}\right) \\
& =\sum_{j=1, \ldots, n-1} \operatorname{Pr}[X(n-1)=j]\left(2^{j}+1\right) \\
& =E\left[2^{X(n-1)}\right]+1
\end{aligned}
$$

Iterating: $E\left[2^{X(n)}\right]=E\left[2^{X(0)}\right]+n=1+n$
Therefore: $\mathrm{E}\left[2^{\mathrm{X}(\mathrm{n})}-1\right]=\mathrm{n}$

Flajolet-Martin algorithm for distinct counting

Motivating example how many neighbors?

. Let $n(u, h)$ be the number of nodes reachable through a path of length up to h from node u
. Naïve method

- Maintain a set for each node u, initialize $S(u)=\{u\}$
- Repeat h times:

$$
S(u)=S(u) \cup \quad \bigcup \quad S(v)
$$

- Answer $n(u, h)=|S(u)| \quad v$ neighbor of u

What is the problem with this method?

- Let $n(u, h)$ be the number of nodes reachable through a path of length up to h from node u
- Naïve method
- Maintain a set for each node u, initialize $S(u)=\{u\}$
- Repeat h times:

$$
S(u)=S(u) \cup \quad \bigcup \quad S(v)
$$

- Answer $n(u, h)=|S(u)|$
v neighbor of u

Let's look at each node

. We will receive a stream of items

- Our neighbors at distance <= h
- Repeated many times because of loops
- We want to use a small amount of memory
. We don't care which items are in the stream
. We just want to know how many are distinct

Flajolet-Martin algorithm for counting distinct elements

- For every element u in the stream, compute hash $h(u)$
- Let $r(u)$ be the number of trailing zeros in hash value
- Example: if $h(u)=001011101000$ then $r(u)=3$
- What is the probability of having

$$
r(u)=1 ? r(u)=2 ? r(u)=3 ?
$$

Flajolet-Martin algorithm for counting distinct elements

- For every element u in the stream, compute hash $h(u)$
- Let $r(u)$ be the number of trailing zeros in hash value
- Example: if $h(u)=001011101000$ then $r(u)=3$
- Maintain $R=\max r(u)$ seen so far
- Output 2^{R} as an estimator of the number of distinct elements seen so far

Flajolet-Martin algorithm (intuition)

- Let $r(u)$ be the number of trailing zeros in hash value, keep $R=\max r(u)$, output 2^{R} as estimate
- Repeated items don't change our estimates because their hashes are equal
- About $1 / 2$ of distinct items hash to ${ }^{* * * * * * * 0}$
- To actually see a *******0, we expect to wait until seeing 2 distinct items
- About $1 / 4$ of distinct items hash to ******00
- To actually see a ******00, we expect to wait until seeing 4 items
- If we actually saw a hash value of ${ }^{* * *} 000 . . .0$ (having R trailing zeros) then on expectation we saw 2^{R} different items

Flajolet-Martin, correctness proof

- Let m be the number of distinct elements
- Let $z(r)$ be the probability of finding a tail of r zeroes
- We will prove that

$$
\begin{aligned}
& -z(r) \rightarrow 1 \text { if } m \gg 2^{r} \\
& -z(r) \rightarrow 0 \text { if } m \ll 2^{r}
\end{aligned}
$$

- Hence 2^{r} should be around m

Flajolet-Martin, correctness proof (cont.)

- Probability a hash value ends in r zeroes $=(1 / 2)^{r}$
- Assuming $h(u)$ produces values at random
- Prob. random binary ends in r zeroes $=(1 / 2)^{r}$
- Probability of seeing m distinct elements and NOT seeing a tail of r zeroes $=\left(1-(1 / 2)^{r}\right)^{m}$

Flajolet-Martin, correctness proof (cont.)

- Probability of seeing m distinct elements and NOT seeing a tail of r zeroes $=\left(1-(1 / 2)^{r}\right)^{m}$
- Remember $(1-\varepsilon)^{1 / \varepsilon} \simeq 1 /$ e for small ε
. Hence

$$
\left(1-\left(\frac{1}{2}\right)^{r}\right)^{m}=\left(1-\left(\frac{1}{2}\right)^{r}\right)^{\frac{m\left(\frac{1}{2}\right)^{r}}{\left(\frac{1}{2}\right)^{r}}} \approx\left(\frac{1}{e}\right)^{\left(\frac{m}{2^{r}}\right)}
$$

Flajolet-Martin, correctness proof (cont.)

- Probability of seeing m distinct elements and NOT seeing a tail of r zeroes

$$
\approx(1 / e)^{\left(\frac{m}{2^{2}}\right)}
$$

- If $m \gg 2^{r}$, this tends to 0
- We almost certainly will see a tail of r zeroes
- If $m \ll 2^{r}$, this tends to 1
- We almost certainly will not see a tail of r zeroes
- Hence, 2^{r} should be around m

Flajolet-Martin: increasing precision

- Idea: repeat many times or compute in parallel for multiple hash functions
. How to combine?
- Average? E[2'] is infinite, extreme values will skew the number excessively
- Median? 2^{r} is always a power of 2
. Solution: group hash functions, take median of values obtained in each group, then average across groups

Let's go back to counting neighbors

Naïve method:

Maintain a set for each node u, initialize $S(u)=\{u\}$
Repeat h times: $S(u)=S(u) \cup \quad \bigcup \quad S(v)$
v neighbor of u
Answer $n(u, h)=|S(u)|$

ANF method:

$/ /$ Set $\mathcal{M}(x, 0)=\{x\}$
FOR each node x DO
$M(x, 0)=$ concatenation of k bitmasks
each with 1 bit set $\left(P(\right.$ bit $\left.i)=.5^{i+1}\right)$
FOR each distance h starting with 1 DO
FOR each node x DO $M(x, h)=M(x, h-1)$
// Update $\mathcal{M}(x, h)$ by adding one step
FOR each edge (x, y) DO
$M(x, h)=(M(x, h)$ BITWISE-OR $M(y, h-1))$
// Compute the estimates for this h
FOR each node x DO
Individual estimate $I \hat{N}(x, h)=\left(2^{b}\right) / .77351$
where b is the average position of the least zero bits in the k bitmasks

Example of another variant of the same type of algorithm

. More repetitions of the algorithm yield better precision

Summary

Things to remember

- Probabilistic counting algorithms:
- Morris
- Flajolet-Martin

Exercises for TT22-T26

- Mining of Massive Datasets (2014) by Leskovec et al.
- Exercises 4.2.5
- Exercises 4.3.4
- Exercises 4.4.5
- Exercises 4.5.6

