## Data Streams:

## Bloom Filters

## Mining Massive Datasets

Materials provided by Prof. Carlos Castillo - https://chato.cl/teach Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

## Sources

- Mining of Massive Datasets (2014) by Leskovec et al. (chapter 4)
- Slides part 1, part 2
- Tutorial: Mining Massive Data Streams (2019) by Michael Hahsler


## Bloom filters

## Filtering a data stream

. Suppose we have a large set S of keys
. We want to filter a stream <key, data> to let pass only the elements for which key $\in S$
. Example: key is an e-mail address, we have a total of $|\mathrm{S}|=10^{9}$ allowed e-mail addresses

## Filtering a data stream

. Suppose we have a large set S of keys
. We want to filter a stream <key, data> to let pass only the elements for which key $\in S$

- Example: key is an e-mail address, we have a total of $|\mathrm{S}|=10^{9}$ allowed e-mail addresses
. Naïve solution? Hash table won't work, too big!


## Bloom Filter (1-bit case)

. Given a set of keys $S$
. Create a bit array B[] of $\boldsymbol{n}$ bits

- Initialize to all Os
- Pick a hash function $h$ with range $[0, n)$
- For each member of $s \in S$
. Hash to one of $n$ buckets
. Set that bit to 1, i.e., $B[h(s)] \leftarrow 1)$
. For each element a of the stream
- Output $a$ if and only if $B[h(a)]==1$


## Bloom Filter is an approximate filter

- Can it output an element with a key not in $S$ ?
- Can it not output an element with a key in S ?


## Bloom Filter is an approximate filter

- Can it output an element with a key not in $S$ ?
- Yes, due to hash collisions $h(x)=h(y)$ when $x \neq y$
- Can it not output an element with a key in $S$ ?

No, because $h(x)$ is always the same for $x$
. Bloom filters are permissive (not strict)

## Bloom filter

. A bloom filter is:

- An array of $n$ bits, initialized as 0
- A collection of hash functions $h_{1}, h_{2}, \ldots, h_{k}$
- A set $S$ of $m$ key values
. The purpose of the bloom filter is to allow all stream items whose key is in $S$


## Bloom filter initialization

. For all positions in [0, n-1]

- $\mathrm{B}[\mathrm{i}] \leftarrow 0$
- For all keys K in S :

For every hash function $h_{1}, h_{2}, \ldots, h_{k}$ $\mathrm{B}\left[\mathrm{h}_{\mathrm{i}}(\mathrm{K})\right] \leftarrow 1$


## Bloom filter usage

- For each input element <key, data> allow $\leftarrow$ TRUE
For every hash function $h_{1}, h_{2}, \ldots, h_{k}$ allow $\leftarrow$ allow $\wedge B\left[h_{i}(K)\right]==1$
output element if allow == TRUE



## Characteristics of Bloom Filters

- Are lax (not strict) and let some items pass
- May require a second-level check to make filter strict, for instance store output on disk files and then check against hash tables (slower)
- Implementations can be very fast
- E.g., use hardware words for the bit table


## Preliminaries for the analysis: targets and darts

- Suppose we throw $y$ darts at $x$ targets
- All darts will hit one of the targets



## Preliminaries for the analysis: targets and darts (cont.)

- How many distinct targets can we expect to hit at least once?
- Prob. that a given dart will hit a specific target is $1 / x$
- Prob. that a given dart will not hit a specific target is 1-1/x
- Prob. none of the $y$ darts will hit a specific target is $(1-1 / x)^{y}=(1-1 / x)^{x(y / x)}$
- Using that $(1-\varepsilon)^{1 / \varepsilon} \simeq 1 / e$ for small $\varepsilon$
- If $x$ is large, $1 / x$ is small, and prob. that none of the $y$ darts will hit a specific target is $(1 / e)^{y / x}$



## Analysis of the 1-bit Bloom Filter

- Each element of the signature $S$ is a dart $|S|=y$
- Each bit in the array is a target $\mathrm{n}=\mathrm{x}$
- Suppose $y=|S|=10^{9}(1 \mathrm{G})$ and $x=n=8 \times 10^{9}(8 \mathrm{G})$
- Prob that a given bit is not set to 1 (dart does not hit the target) is $(1 / e)^{y / x}=$ $(1 / \mathrm{e})^{1 / 8}$
- Prob. that a given bit is set to 1 is $1-(1 / \mathrm{e})^{1 / 8}=0.1175$
- Expected number of bits that is set to $1=11.75 \% \times 8 \mathrm{~GB}$
- About $12 \%$ of bits are set to one in this Bloom Filter
- this is also the false-hit probability in this case


## General case

- $|S|=m$ keys, array has $n$ bits
- k hash functions
- Targets $\mathrm{x}=\mathrm{n}$, darts $\mathrm{y}=\mathrm{km}$
- Probability that a bit remains 0 is $(1 / e)^{\mathrm{km} / \mathrm{n}=} e^{-\mathrm{km} / \mathrm{n}}$
- False positive rate with k bits: $\left(1-e^{-\mathrm{km} / \mathrm{n}}\right)^{\mathrm{k}}$
- This is the probability that all of the $k$ bits are set to 1
- Example: we can pick $\mathrm{k}=\mathrm{n} / \mathrm{m}$ to obtain collision probability $1 / \mathrm{e}=37 \%$


## Analysis of a 2-bit Bloom Filter

- Suppose $|\mathrm{S}|=10^{9}(1 \mathrm{G})$ and $\mathrm{n}=8 \times 10^{9}$ ( 8 GB )
- Suppose we use two hash functions
- Prob. that a given bit is NOT set to 1 (dart does not hit the target) is $(1 / e)^{y / x}=(1 / e)^{1 / 4}$
- Prob. a bit is set to 1 is $1-(1 / e)^{1 / 4}$
- Prob. two bits are set to 1 is $\left(1-(1 / e)^{1 / 4}\right)^{2}=0.0493$
- We have a false hit probability of about $5 \%$ with two hash functions, while the probability was about $12 \%$ with only one


## How many hash functions to use?

Too few: test is too unspecific. Too many: table becomes too crowded.

- $m=1$ billion, $n=8$ billion
- False positive rate with k bits: (1-$\left.\mathrm{e}^{-\mathrm{km} / n}\right)^{\mathrm{k}}$
- $k=1:\left(1-e^{-1 / 8}\right)^{1}=\left(1-e^{-1 / 8}\right)=0.1175$
- $\mathbf{k}=\mathbf{2}:\left(1-e^{-2 / 8}\right)^{2}=\left(1-e^{-1 / 4}\right)^{2}=0.0493$
- What happens as we keep increasing $k$ ?
- "Optimal" value of $\boldsymbol{k}: \boldsymbol{n} / \boldsymbol{m} \ln (2)$
- In our case: Optimal $k=8 \ln (2)=5.54 \approx$ 6
- Error at $\mathbf{k}=\mathbf{6}:\left(1-e^{-6 / 8}\right)^{6}=\mathbf{0 . 0 2 1 6}$



## Summary

## Things to remember

- How to initialize a Bloom filter
- How to use a Bloom filter
- Proofs for 1-bit, 2-bit case


## Exercises for TT22-T26

- Mining of Massive Datasets (2014) by Leskovec et al.
- Exercises 4.2.5
- Exercises 4.3.4
- Exercises 4.4.5
- Exercises 4.5.6

