
Data Streams:
Bloom Filters

Mining Massive Datasets
Materials provided by Prof. Carlos Castillo — https://chato.cl/teach
Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

https://chato.cl/teach
https://tbuda.github.io/

Sources

● Mining of Massive Datasets (2014) by Leskovec
et al. (chapter 4)
− Slides part 1, part 2

● Tutorial: Mining Massive Data Streams (2019)
by Michael Hahsler

http://www.mmds.org/mmds/v2.1/ch04-streams1.pdf
http://www.mmds.org/mmds/v2.1/ch04-streams2.pdf
https://michael.hahsler.net/SMU/EMIS8331/slides/datastream/datastream.pdf

Bloom filters

Filtering a data stream

● Suppose we have a large set S of keys

● We want to filter a stream <key, data> to let pass only
the elements for which key ∊ S

● Example: key is an e-mail address, we have a total of
|S|=109 allowed e-mail addresses

What’s the Naïve solution?

Filtering a data stream

● Suppose we have a large set S of keys
● We want to filter a stream <key, data> to let pass only

the elements for which key ∊ S
● Example: key is an e-mail address, we have a total of

|S|=109 allowed e-mail addresses
● Naïve solution? Hash table won’t work, too big!

Bloom Filter (1-bit case)

● Given a set of keys S
● Create a bit array B[] of n bits

− Initialize to all 0s
● Pick a hash function h with range [0,n)

− For each member of s ∈ S
● Hash to one of n buckets
● Set that bit to 1, i.e., B[h(s)] ← 1

● For each element a of the stream
− Output a if and only if B[h(a)] == 1

Bloom filter creation

Stream processing

Bloom Filter is an approximate filter

● Can it output an element with a key not in S?

● Can it not output an element with a key in S?

Bloom Filter is an approximate filter

● Can it output an element with a key not in S?

○ Yes, due to hash collisions h(x)=h(y) when x≠y

● Can it not output an element with a key in S?

○ No, because h(x) is always the same for x

● Bloom filters are permissive (not strict)

Bloom filter

● A bloom filter is:
− An array of n bits, initialized as 0

− A collection of hash functions h1, h2, …, hk

− A set S of m key values

● The purpose of the bloom filter is to allow all stream items
whose key is in S

Bloom filter initialization

● For all positions i in [0, n-1]
− B[i] ← 0

● For all keys K in S:
For every hash function h1, h2, …, hk

B[hi(K)] ← 1

Bloom filter usage

● For each input element <key, data>
allow ← TRUE
For every hash function h1, h2, …, hk

allow ← allow ∧ B[hi(K)] == 1
output element if allow == TRUE

Characteristics of Bloom Filters

● Are lax (not strict) and let some items pass
− May require a second-level check to make filter strict, for instance

store output on disk files and then check against hash tables (slower)

● Implementations can be very fast
− E.g., use hardware words for the bit table

Preliminaries for the analysis:
targets and darts

● Suppose we throw y darts at x
targets
− All darts will hit one of the targets

y=4 darts x=4 targets

Preliminaries for the analysis:
targets and darts (cont.)

● How many distinct targets can we expect to hit at
least once?
− Prob. that a given dart will hit a specific target is 1/x

− Prob. that a given dart will not hit a specific target is
1-1/x

− Prob. none of the y darts will hit a specific target is
(1-1/x)y = (1-1/x)x(y/x)

− Using that (1-ε)1/ε ≃ 1/e for small ε
− If x is large, 1/x is small, and prob. that none of the y

darts will hit a specific target is (1/e)y/x
y=4 darts x=4 targets

Analysis of the 1-bit Bloom Filter
● Each element of the signature S is a dart |S|=y

● Each bit in the array is a target n=x

● Suppose y=|S|=109
 (1 G) and x=n=8 x 109 (8 G)

● Prob. that a given bit is not set to 1 (dart does not hit the target) is (1/e)y/x =
(1/e)1/8

● Prob. that a given bit is set to 1 is 1 – (1/e)1/8 = 0.1175

● Expected number of bits that is set to 1 = 11.75% x 8GB
− About 12% of bits are set to one in this Bloom Filter
− this is also the false-hit probability in this case

General case
● |S|=m keys, array has n bits
● k hash functions
● Targets x=n, darts y=km
● Probability that a bit remains 0 is (1/e)km/n = e-km/n

● False positive rate with k bits: (1 - e-km/n)k

− This is the probability that all of the k bits are set to 1

● Example: we can pick k=n/m to obtain collision
probability 1/e = 37%

Analysis of a 2-bit Bloom Filter
● Suppose |S|=109

 (1 G) and n=8 x 109 (8 GB)
● Suppose we use two hash functions
● Prob. that a given bit is NOT set to 1 (dart does not hit the

target) is (1/e)y/x = (1/e)1/4

● Prob. a bit is set to 1 is 1 – (1/e)1/4
● Prob. two bits are set to 1 is (1 – (1/e)1/4)2 = 0.0493
● We have a false hit probability of about 5% with two hash

functions, while the probability was about 12% with only one

How many hash functions to use?
Too few: test is too unspecific. Too many: table becomes too crowded.

● m = 1 billion, n = 8 billion

− False positive rate with k bits: (1 -
e-km/n)k

− k = 1: (1 – e -1/8)1 = (1 – e -1/8) = 0.1175
− k = 2: (1 – e -2/8)2 = (1 – e -1/4)2 = 0.0493

● What happens as we
keep increasing k?
− “Optimal” value of k: n/m ln(2)
− In our case: Optimal k = 8 ln(2) = 5.54 ≈

6
− Error at k = 6: (1 – e -6/8)6 = 0.0216

Number of hash functions, k

Fa
ls

e
po

si
tiv

e
pr

ob
.

Summary

Things to remember

● How to initialize a Bloom filter
● How to use a Bloom filter
● Proofs for 1-bit, 2-bit case

Exercises for TT22-T26

● Mining of Massive Datasets (2014) by Leskovec et
al.
− Exercises 4.2.5
− Exercises 4.3.4
− Exercises 4.4.5
− Exercises 4.5.6

