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Sources

● Mining of Massive Datasets (2014) by Leskovec 
et al. (chapter 4)
− Slides part 1, part 2

● Tutorial: Mining Massive Data Streams (2019) 
by Michael Hahsler

http://www.mmds.org/mmds/v2.1/ch04-streams1.pdf
http://www.mmds.org/mmds/v2.1/ch04-streams2.pdf
https://michael.hahsler.net/SMU/CS8331/slides/datastream/datastream.pdf


What is a data stream?
● A potentially infinite sequence of data points

− Each data point can be a tuple or vector
● Examples:

− web click-stream data → who clicks on what
− computer network monitoring data
− telecommunication connection data
− readings from sensor nets
− stock quotes

Do not confuse with “streaming,” 
which typically means watching a 

video while it is being downloaded.



Example: web server log



● Unbounded size
− Data cannot be persisted on disk

− Only summaries can be stored

● Transient
− Single pass over the data

− Sometimes real-time processing is needed

● Dynamic
− May require incremental updates

− May require to forget old data

− Concepts “drift” 

● Temporal order is often important

Key properties of data 
streams



Applications
● Mining query streams

− A search engine wants to know what queries are more 
frequent today than yesterday

● Mining click streams
− A newspaper wants to know when one of its pages starts 

getting an unusual number of hits per hour

● Mining social network news feeds
− A social media platform wants to show trending topics



Applications (cont.)
● Sensor Networks 

− Many sensors feeding into a central controller

● Telephone call records 
− Data feeds into customer bills as well as settlements between 

telephone companies

● IP packets monitored at a switch
− Gather information for optimal routing
− Detect denial-of-service attacks



Why not simply use a relational DB?

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom (2002). Models and issues in data stream 
systems. In PODS ’02, pages 1–16, ACM Press.



Why do we need new algorithms?
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Input streams
Each is stream is 
composed of 
elements/tuples

http://www.mmds.org/


Load shedding



Too much data? Ignore some of it

Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shedding techniques for data stream systems. In Proc. MPDS, 2003.



Sampling a fixed proportion



Sampling a fixed proportion

● Example stream: <user, query, timestamp>
from a search engine query log

● Suppose we have space to store 1/r of the stream
− E.g.: 1/10th, 1/100th, 1/1000th,

● Naïve solution:
− Generate uniform random number in 0...(r-1)

● numpy.random.uniform(0,r)

− If the number is 0, keep the item



What can we do with this sample?

● Approximate most frequent query
− Pick the most frequent in the sample

● Approximate frequency of a query
− Multiply observed frequency by r

● Do people ask query q?
− Approximate answer (with some prob. of error)



Exercise: sampling at a fixed rate

● We want to tell if we have seen item q
● Suppose we have seen n items
● Suppose we have sampled a fraction 1/r
● Suppose item q appears with probability p(q)
● Can we observe a ...

− False Positive? (Item q was not in the stream but we said it was)
− False Negative? (Item q was in the stream but we said it was not)



Answer
● We want to tell if we have seen item q
● Suppose we have seen n items
● Suppose we have sampled a fraction 1/r

● Suppose item q appears with probability p(q)

● Can we observe a ...
− False Positive?      NO. We cannot observe an item that is not.

− False Negative?     YES. We can miss an item that is there.



What can we do with this…? (cont.)

● Approximate num. queries per minute

● Peak frequency
− Multiply observed peak by r

https://steemit.com/steemsql/@arcange/steemsql-update-14-infrastructure-upgraded-for-better-performances 

https://steemit.com/steemsql/@arcange/steemsql-update-14-infrastructure-upgraded-for-better-performances


There are questions we cannot answer
with this sampling method

● What fraction of queries by an average search engine user are duplicates?
− Suppose each user issues x queries once and d queries twice (total of x+2d queries)

− Correct answer: d/(x+d)

● Proposed solution: We keep 1/10th of the queries (r=10)
− Sample will contain x/10 of the singleton queries at least once

− Sample will contain 2d/10 of the duplicate queries at least once

− Sample will contain d/100 pairs of duplicates
● d/100 = 1/10 ∙ 1/10 ∙ d

− Of the d duplicates, 18d/100 will be seen once*
● 18d/100 = ((1/10 ∙ 9/10)+(9/10 ∙ 1/10)) ∙ d

● So the sample-based answer is
* Copy A is in the selected part, copy B in the unselected part, or viceversa



There are questions we cannot answer
with this sampling method (cont.)

Observed singletons Observed duplicates

Observed duplicates
WRONG!

● What fraction of queries by an average search engine user are duplicates?
− Suppose each user issues x queries once and d queries twice (total of x+2d queries)

− Correct answer: d/(x+d)

● Proposed solution: We keep 1/10th of the queries (r=10)
− Sample will contain x/10 of the singleton queries at least once

− Sample will contain 2d/10 of the duplicate queries at least once

− Sample will contain d/100 pairs of duplicates
● d/100 = 1/10 ∙ 1/10 ∙ d

− Of the d duplicates, 18d/100 will be seen once*
● 18d/100 = ((1/10 ∙ 9/10)+(9/10 ∙ 1/10)) ∙ d

● So the sample-based answer is



Sampling tuples at random by one 
attribute

Suppose we need to sample 1/r 
of users and all of their actions

How do we do this?

<user1, action, timestamp>
<user2, action, timestamp>
<user2, action, timestamp>
<user3, action, timestamp>
<user1, action, timestamp>
<user3, action, timestamp>
<user2, action, timestamp>
<user1, action, timestamp>
<user2, action, timestamp>
...



How do we solve it?

● We need to sample 1/r of users
and all of their actions

● How do we do this?
− Hashing!
− Given <user, action, timestamp>
− Compute h(user) → 0, 1, …, (r-1)
− Keep tuple if hash value is 0

<user1, action, timestamp>
<user2, action, timestamp>
<user2, action, timestamp>
<user3, action, timestamp>
<user1, action, timestamp>
<user3, action, timestamp>
<user2, action, timestamp>
<user1, action, timestamp>
<user2, action, timestamp>
...



In general ...

● To sample a fraction a/b of a stream by key

● Compute h(key) → 0, 1, …, (b-1)

● Keep if h(key) < a

0 1 b-1

a

...



Summary



Things to remember

● What is a data stream
● How to sample a fixed percentage of values 

grouped by a key, using hashing



Exercises for TT22-T26

● Mining of Massive Datasets (2014) by Leskovec 
et al.
− Exercises 4.2.5
− Exercises 4.3.4
− Exercises 4.4.5
− Exercises 4.5.6


