

Outlier Detection: Density and Partition-Based

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — <u>https://chato.cl/teach</u> Instructor: Dr. Teodora Sandra Buda — <u>https://tbuda.github.io/</u>

Sources

Liu, F. T., Ting, K. M., & Zhou, Z. H. Isolation forest. ICDM 2008.

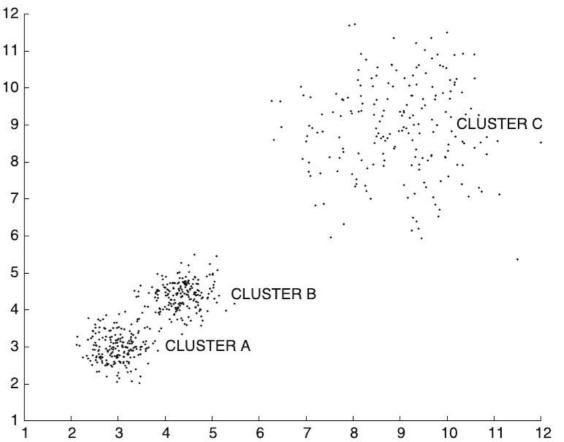
(1) Eryk Lewinson: Outlier detection with isolation forest (2018)

(2) Tobias Sterbak: Detecting network attacks with isolation forests (2018)

Density-based methods

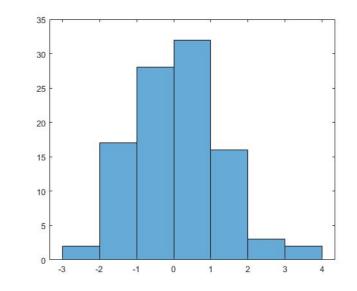
Density-based methods

- Key idea: find sparse regions in the data
- Limitation: cannot handle variations of density



Histogram- and grid-based methods

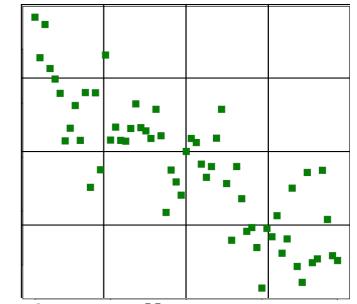
- Histogram-based method:
- 1. Put data into **bins**
- Outlier score: num 1, where num is the number of items in the same bin
- Clear outliers are alone or almost alone in a **bin**



Histogram- and grid-based methods

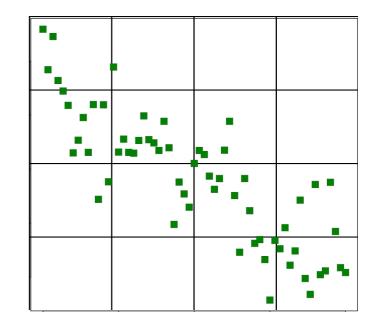
Grid-based method

- 1. Put data into a grid
- 2. Outlier score: *num* 1, where *num* is the number of items in the same **cell** Clear outliers are alone or almost alone in a **cell**



Problems with grid-based methods

- . How to choose the grid size?
- Grid size should be chosen considering data density, but density might vary across regions
- If dimensionality is high, then most cells will be empty



Kernel-based methods

. Given n points $\overline{X_1}, \overline{X_2}, \ldots, \overline{X_n}$

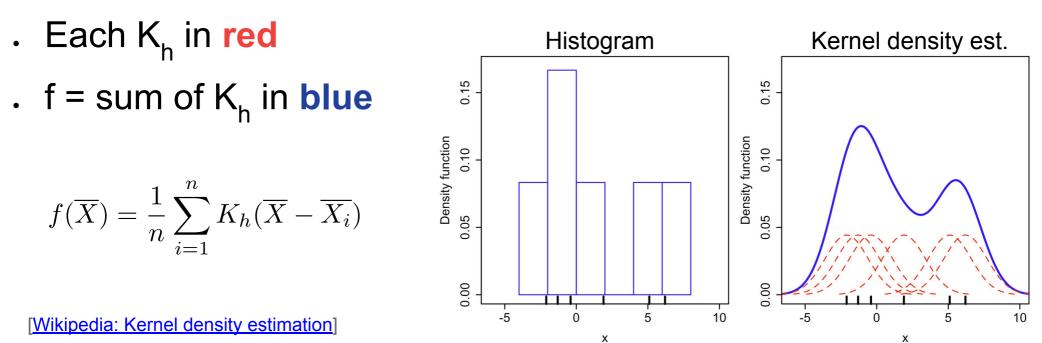
$$f(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} K_h(\overline{X} - \overline{X_i})$$

- . K_h is a function peaking at X_i with bandwidth h
- . For instance, a Gaussian kernel:

$$K_h(\overline{X} - \overline{X_i}) = \left(\frac{1}{\sqrt{2\pi} \cdot h}\right)^d \cdot e^{-\left\|\overline{X} - \overline{X_i}\right\|^2 / (2h^2)}$$

Kernel-based methods (cont.)

- . Example with a Gaussian kernel
 - -X = < -2.1, -1.3, -0.4, 1.9, 5.1, 6.2 >



Information-theoretic models

- - "AB" 17 times
- - Minimum description length increased
- . Information-theoretic models: learn a model, then look at increases in model size due to a data point

Partitioning-based method: isolation forest

Isolation forest method

. tree_build(X)

- Pick a random dimension r of dataset X
- Pick a random point p in $[min_r(X), max_r(X)]$
- Divide the data into two pieces: $x_r < p$ and $x_r \ge p$
- Recursively process each piece

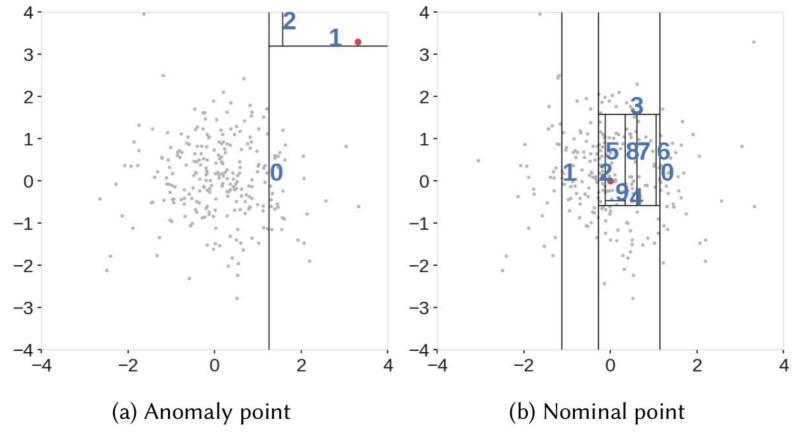
Stopping criteria for recursion

. Stop when a maximum depth has been reached

-or-

. Stop when each point is alone in one partition

Key: outliers lie at small depths



https://towardsdatascience.com/outlier-detection-with-extended-isolation-forest-1e248a3fe97b

Outlier score

Let c(n) be the average path length of an unsuccessful search in a binary tree of n items

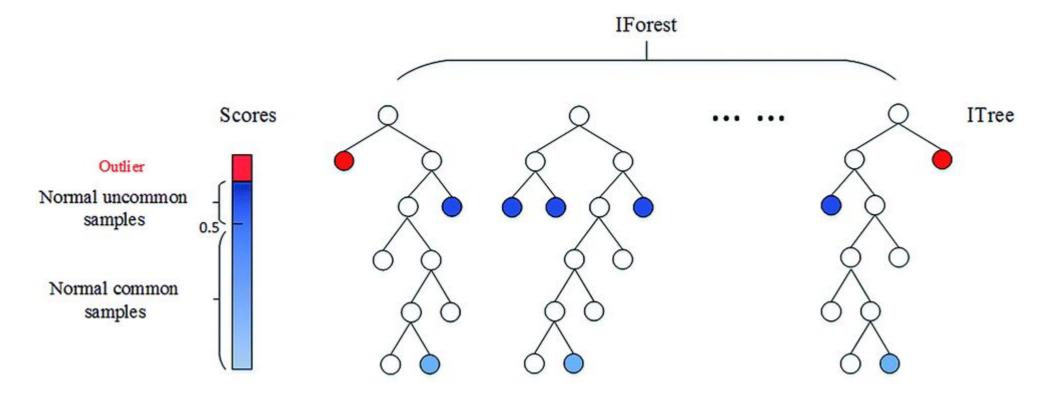
$$c(n) = 2H(n-1) - (2(n-1)/n)$$

$$H(n) = \sum_{k=1}^{n} \frac{1}{k}$$

- . h(x) is the depth at which x is found in tree
- . Score:

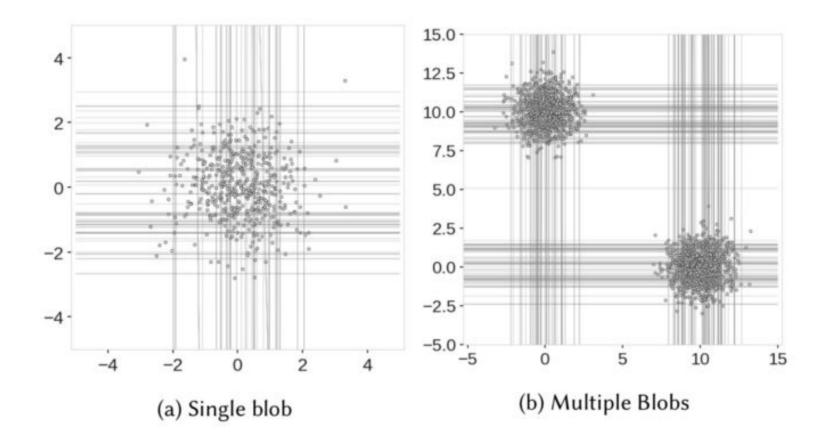
outlier
$$(x, n) = 2^{-\frac{E(h(x))}{c(n)}}$$

Outlier scores in isolation forests (each tree is built from a sub-sample of original data)



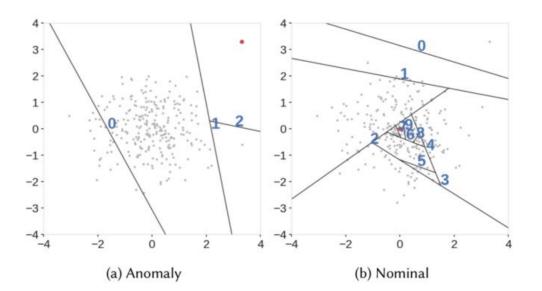
https://donghwa-kim.github.io/iforest.html

Example (Note: here lines cross each other: we do not cross lines)



Extended Isolation Forest

. More freedom to partitioning by choosing a random slope and a random intercept



https://towardsdatascience.com/outlier-detection-with-extended-isolation-forest-1e248a3fe97b

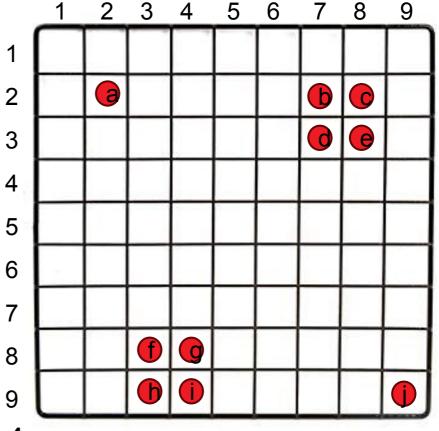
Exercise: isolation forest

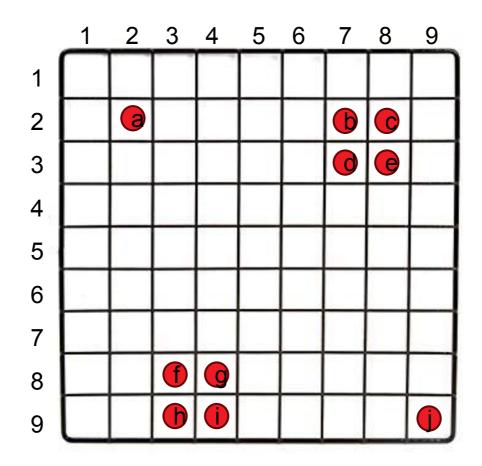
- Create one tree of the isolation forest by repeating 4 times:
 - Picking a sector containing >1 element
 - Picking a random dimension
 - Picking a random cut-off between min and max value along that dimension
 - Draw the line of your cut do not cross lines, and label each line with a number 0, 1, 2, ...
- Stop when each point is isolated
- Label each point with its depth h(x)

This is normally repeated several times, in the end:

outlier
$$(x, n) = 2^{-\frac{E(h(x))}{c(n)}}$$

In this case $c(10) = 2xH(9) - (2x9/10) \approx 3.857 \approx 4$





Example answer

Let A = original data

- First cut, applied over A
 - Randomly pick dimension: x₁
 - In part A along dimension x₁, min=2, max=9
 - Randomly pick cut in [2,9]: 7
 - Let $B = A(x_1 < 7)$
 - Let $C = A(x_1 \ge 7)$
- Second cut, applied over B
 - Randomly pick dimension: X₁
 - In part B along dimension x₁, min = 2, max=3
 - Randomly pick cut in [2,3]: 3
 - Let $D = B(x_1 < 3)$
 - Let $E = B(x_1 \ge 3)$
- 3 Third cut, applied over C
 - Randomly pick dimension: x₂
 - In part C along dimension x₂, min=3, max=9

x₁ < 7

В

x₁ ≥ 3

F

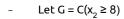
x₁ < 3

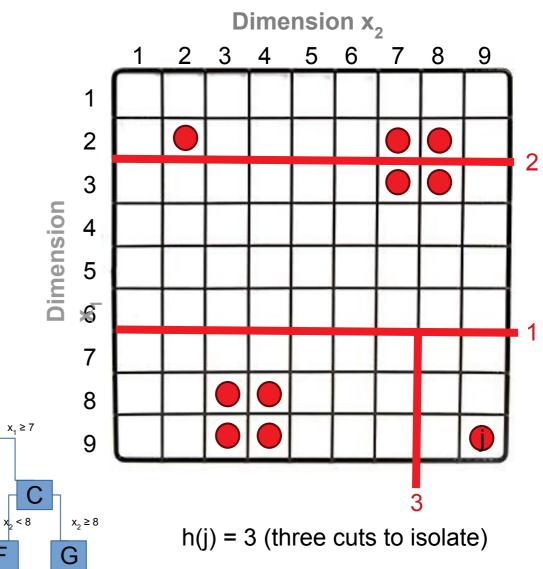
D

A

F

- Randomly pick cut in [3,9]: 8
- Let F = C(x₂ < 8)</p>





Summary

Things to remember

- . Density-based methods
- Isolation forest

Exercises for TT19-TT21

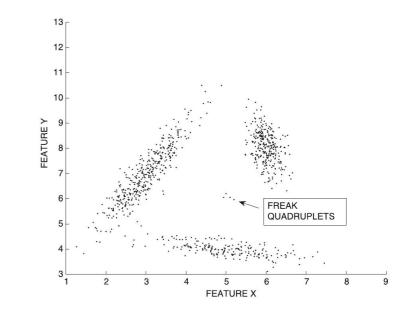
- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises 8.11 \rightarrow all except 10, 15, 16, 17

Additional contents (not included in exams)

Distance-based methods

Instance-specific definition

- The distance-based outlier score of an object x is its distance to its kth nearest neighbor
- In this example of a small group of 4 outliers, we can set k > 3

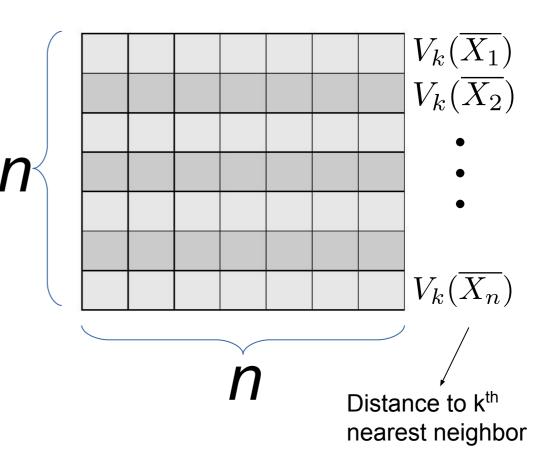


Problem: computational cost

- The distance-based outlier score of an object x is its distance to its kth nearest neighbor
- . In principle this requires $O(n^2)$ computations!
 - Index structure: useful only for cases of low data dimensionality
 - Pruning tricks: useful when only top-r outliers are needed

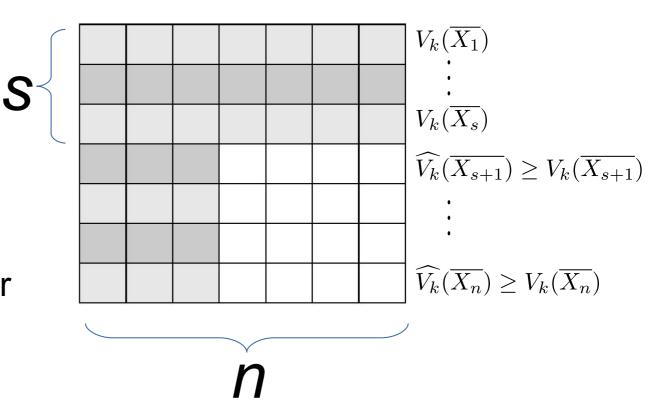
Problem: computational cost

- . The distance-based outlier score of an item x is its distance to its kth nearest neighbor
- . In principle this requires:
 - O(П²) computations for evaluating the n x n distance matrix
 - O(n²) computations for finding the r smallest values on each row



Pruning method: sampling

- . Evaluate s x n distances
- For points
 1...s we are OK
- . For points (s+1)...n we know only upper bounds



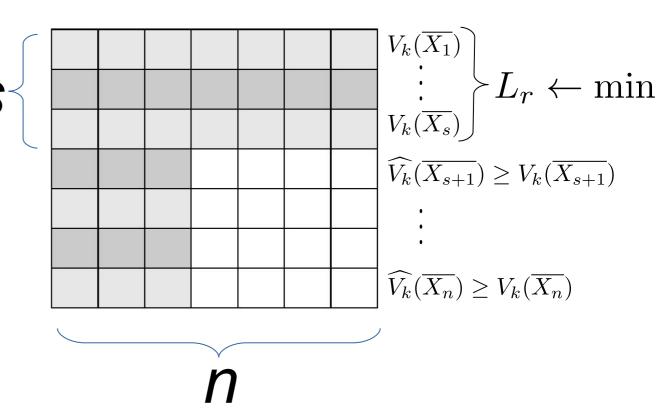
Pruning method: sampling (cont.)

From points

- 1...s we already know the r "winners"
- (*r*≤*s* nodes with the larger distance to their kth

nearest neighbor)

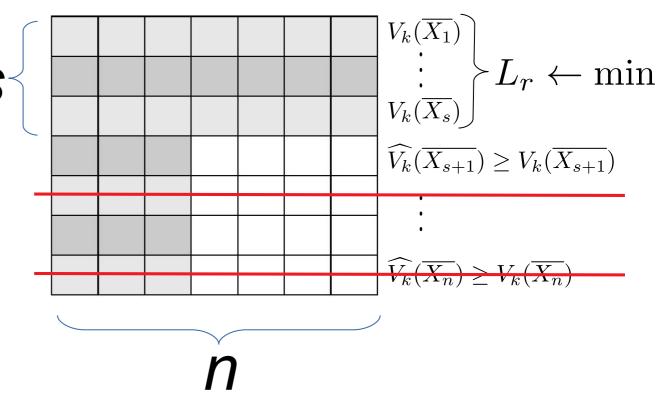
Any point having $V_k < L_s$ cannot be among the top r outliers



Pruning method: sampling (cont.)

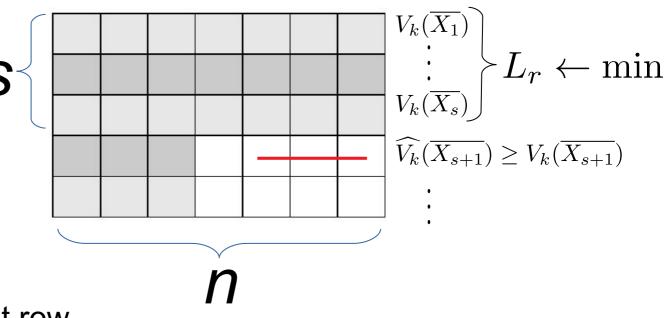
From points

- 1...s we already know the r "winners"
- (*r*≤*s* nodes with the larger distance to their kth nearest neighbor)
- Any point having $V_k < L_s$ cannot be among the top r outliers



Pruning method: sampling (cont.)

Remove points having $\widehat{V_k} < L_r$ S Update L_r keeping r largest values, and stop computing for a row if one already finds k nearest neighbors in that row that are all below distance L_r



Local outlier factor

Local Outlier Factor (LOF)

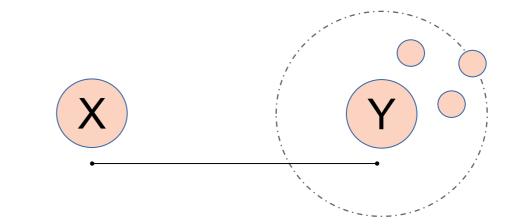
Let V_k(X) be the distance of X to its k-nearest neighbor
Reachability distance

$$R_k(\overline{X}, \overline{Y}) = \max\{\text{Dist}(\overline{X}, \overline{Y}), V_k(\overline{Y})\}\$$

- . $V_k(X)$: distance of X to its k-nearest neighbor
- . Reachability distance

$$R_k(\overline{X}, \overline{Y}) = \max\{\text{Dist}(\overline{X}, \overline{Y}), V_k(\overline{Y})\}\$$

- Not symmetric
- Equal to simple distance for long distances
- Smoothed by $V_k(X)$ for short distances



- . Reachability distance $R_k(\overline{X},\overline{Y}) = \max\{\text{Dist}(\overline{X},\overline{Y}), V_k(\overline{Y})\}$
- . Average reachability distance

$$AR_k(\overline{X}) = \mathop{E}_{\overline{Y} \in L_k(\overline{X})} \left[R_k(\overline{X}, \overline{Y}) \right]$$

• $L_k(X)$ is the set of points within distance $V_k(X)$ of X (might be more than k due to ties)

$$R_k(\overline{X}, \overline{Y}) = \max\{\text{Dist}(\overline{X}, \overline{Y}), V_k(\overline{Y}) \\ AR_k(\overline{X}) = \mathop{E}_{\overline{Y} \in L_k(\overline{X})} \left[R_k(\overline{X}, \overline{Y}) \right]$$

Local outlier factor

Outlier score

$$\operatorname{LOF}_{k}(\overline{X}) = \mathop{E}_{\overline{Y} \in L_{k}(\overline{X})} \frac{AR_{k}(\overline{X})}{AR_{k}(\overline{Y})}$$

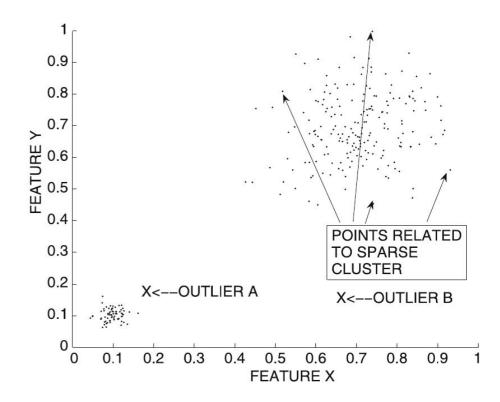
$$\max_k \operatorname{LOF}_k(\overline{X})$$

• Large for outliers, close to 1 for others

Local outlier factor

$$\operatorname{LOF}_{k}(\overline{X}) = \mathop{E}_{\overline{Y} \in L_{k}(\overline{X})} \frac{AR_{k}(X)}{AR_{k}(\overline{Y})}$$

- LOF values for points inside a cluster are close to one if cluster is homogeneous
- LOF values much higher for outliers: they are computed in terms of average distances of near-by clusters



- $R_k(\overline{X}, \overline{Y}) = \max\{\text{Dist}(\overline{X}, \overline{Y}), V_k(\overline{Y})\}\$ $R_{k}(u,a) = 2; R_{k}(u,b) = 2; R_{k}(v,b) = 4; R_{k}(v,u) = 5$ • V_2 = distance to 2nd nearest neighbor: $V_2(u) = 1$; $V_2(v) = 5$; $V_2(a) = 2$; $V_2(b) = 2$
- $R_{k}(a,u) = 1; R_{k}(a,b) = 2; R_{k}(b,u) = 1; R_{k}(b,a) = 2$ •
- $AR_{2}(b) = E[\{R_{k}(b,u), R_{k}(b,a)\}] = 1.5$ ٠
- $AR_{2}(a) = E[\{R_{k}(a,u), R_{k}(a,b)\}] = 1.5$
- $AR_{2}(v) = E[\{R_{k}(v,b), R_{k}(v,u)\}] = 4.5$ ٠

 $AR_k(\overline{X}) = \mathop{E}_{\overline{Y} \in L_k(\overline{X})} \left[R_k(\overline{X}, \overline{Y}) \right]$

- $AR_{2}(u) = E[\{R_{k}(u,a), R_{k}(u,b)\}] = 2$ ٠
- $LOF_{2}(u) = E[\{AR_{2}(u) / AR_{2}(a), AR_{2}(u) / AR_{2}(b)\}] = (1.33+1.33)/2 = 1.33$ $AR_k(X)$ $LOF_{2}(v) = E[\{AR_{2}(v) / AR_{2}(b), AR_{2}(v) / AR_{2}(u)\}] = (3+2.25)/2 = LOF_{k}(\overline{X}) = E[\{AR_{2}(v) / AR_{2}(b), AR_{2}(v) / AR_{2}(u)\}] = (3+2.25)/2 = LOF_{k}(\overline{X}) = E[\{AR_{2}(v) / AR_{2}(b), AR_{2}(v) / AR_{2}(u)\}] = (3+2.25)/2 = LOF_{k}(\overline{X}) = E[\{AR_{2}(v) / AR_{2}(b), AR_{2}(v) / AR_{2}(u)\}] = (3+2.25)/2 = LOF_{k}(\overline{X}) = E[\{AR_{2}(v) / AR_{2}(b), AR_{2}(v) / AR_{2}(u)\}] = (3+2.25)/2 = LOF_{k}(\overline{X}) = E[\{AR_{2}(v) / AR_{2}(b), AR_{2}(v) / AR_{2}(u)\}] = (3+2.25)/2 = LOF_{k}(\overline{X}) = E[\{AR_{2}(v) / AR_{2}(b), AR_{2}(v) / AR_{2}(u)\}] = (3+2.25)/2 = LOF_{k}(\overline{X}) = E[\{AR_{2}(v) / AR_{2}(b), AR_{2}(v) / AR_{2}(u)\}] = E[\{AR_{2}(v) / AR_{2}(v) / AR_{2}(v) / AR_{2}(v) / AR_{2}(v) / AR_{2}(v)\}] = E[\{AR_{2}(v) / AR_{2}(v) / AR_{2}$ $\overline{Y} \in L_k(\overline{X})$
- Let k=2

Answer

