Outlier Detection:

Density and Partition-Based

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo - https://chato.cl/teach Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

sources

Liu, F. T., Ting, K. M., \& Zhou, Z. H. Isolation forest. ICDM 2008.
(1) Eryk Lewinson: Outlier detection with isolation forest (2018)
(2) Tobias Sterbak: Detecting network attacks with isolation forests (2018)

Density-based methods

Density-based methods

- Key idea: find sparse regions in the data
- Limitation:
cannot handle variations of density

Histogram- and grid-based methods

Histogram-based method:

1. Put data into bins
2. Outlier score: num - 1, where num is the number of items in the same bin

Clear outliers are alone or almost alone in a bin

Histogram- and grid-based methods

Grid-based method

1. Put data into a grid
2. Outlier score: num - 1, where num is the number of items in the same cell

Clear outliers are alone or almost alone in a cell

Problems with grid-based methods

. How to choose the grid size?

- Grid size should be chosen considering data density, but density might vary across regions
- If dimensionality is high, then
 most cells will be empty

Kernel-based methods

. Given n points $\overline{X_{1}}, \overline{X_{2}}, \ldots, \overline{X_{n}}$

$$
f(\bar{X})=\frac{1}{n} \sum_{i=1}^{n} K_{h}\left(\bar{X}-\overline{X_{i}}\right)
$$

- K_{h} is a function peaking at X_{i} with bandwidth h
. For instance, a Gaussian kernel:

$$
K_{h}\left(\bar{X}-\overline{X_{i}}\right)=\left(\frac{1}{\sqrt{2 \pi} \cdot h}\right)^{d} \cdot e^{-\left\|\bar{X}-\overline{X_{i}}\right\|^{2} /\left(2 h^{2}\right)}
$$

Kernel-based methods (cont.)

- Example with a Gaussian kernel
- $X=<-2.1,-1.3,-0.4,1.9,5.1,6.2>$
- Each K_{h} in red
. $f=\operatorname{sum}$ of K_{h} in blue

$$
f(\bar{X})=\frac{1}{n} \sum_{i=1}^{n} K_{h}\left(\bar{X}-\overline{X_{i}}\right)
$$

Information-theoretic models

- Describe "ababababababababababababababababab"
- "AB" 17 times
- Describe "ababacabababababababababababababab"
- Minimum description length increased
. Information-theoretic models: learn a model, then look at increases in model size due to a data point

Partitioning-based method: isolation forest

Isolation forest method

. tree_build(X)

- Pick a random dimension r of dataset X
- Pick a random point p in $\left[\min _{r}(X), \max _{r}(X)\right]$
- Divide the data into two pieces: $x_{r}<p$ and $x_{r} \geq p$
- Recursively process each piece

Stopping criteria for recursion

. Stop when a maximum depth has been reached
-or-
. Stop when each point is alone in one partition

Key: outliers lie at small depths

Outlier score

- Let $\mathrm{c}(\mathrm{n})$ be the average path length of an unsuccessful search in a binary tree of n items

$$
c(n)=2 H(n-1)-(2(n-1) / n)
$$

$$
H(n)=\sum_{k=1}^{n} \frac{1}{k}
$$

. $\mathrm{h}(\mathrm{x})$ is the depth at which x is found in tree
. Score:

$$
\operatorname{outlier}(x, n)=2^{-\frac{E(h(x))}{c(n)}}
$$

Outlier scores in isolation forests

(each tree is built from a sub-sample of original data)

https://donghwa-kim.github.io/iforest.html

Example

(Note: here lines cross each other: we do not cross lines)

(a) Single blob

(b) Multiple Blobs

Extended Isolation Forest

. More freedom to partitioning by choosing a random slope and a random intercept

Exercise: isolation forest

- Create one tree of the isolation forest by repeating 4 times:
- Picking a sector containing >1 element
- Picking a random dimension
- Picking a random cut-off between min and max value along that dimension
- Draw the line of your cut - do not cross lines, and label each line with a number $0,1,2, \ldots$
- Stop when each point is isolated
- Label each point with its depth $h(x)$

This is normally repeated several times, in the end:

$$
\operatorname{outlier}(x, n)=2^{-\frac{E(h(x))}{c(n)}}
$$

	1	2	3	4	5	6	7	8	9
1									
2		(2)					(b)	(c)	
3							(d)	(e)	
4									
5									
6									
7									
8			(f)	(9)					
9			(b)	(i)					(1)

In this case $\mathrm{c}(10)=2 \mathrm{xH}(9)-(2 \times 9 / 10) \simeq 3.857 \simeq 4$

Example answer
 Let $A=$ original data

First cut, applied over A

- Randomly pick dimension: x_{1}
- In part A along dimension $x_{1}, m i n=2, \max =9$
- \quad Randomly pick cut in [2,9]: 7
- \quad Let $\mathrm{B}=\mathrm{A}\left(\mathrm{x}_{1}<7\right)$
- \quad Let $C=A\left(x_{1} \geq 7\right)$

Second cut, applied over B

- Randomly pick dimension: x_{1}
- In part B along dimension $\mathrm{x}_{1}, \min =2, \max =3$
- \quad Randomly pick cut in [2,3]: 3
- \quad Let $\mathrm{D}=\mathrm{B}\left(\mathrm{x}_{1}<3\right)$
- Let $\mathrm{E}=\mathrm{B}\left(\mathrm{x}_{1} \geq 3\right)$

Third cut, applied over C

- Randomly pick dimension: x_{2}
- In part C along dimension $x_{2}, \min =3, \max =9$
- Randomly pick cut in [3,9]: 8
- Let $\mathrm{F}=\mathrm{C}\left(\mathrm{x}_{2}<8\right)$
- \quad Let $G=C\left(x_{2} \geq 8\right)$

Dimension x_{2}

$h(j)=3$ (three cuts to isolate)

Summary

Things to remember

- Density-based methods
- Isolation forest

Exercises for TT19-TT21

- Data Mining, The Textbook (2015) by Charu Aggarwal
- Exercises $8.11 \rightarrow$ all except 10, 15, 16, 17

Additional contents (not included in exams)

Distance-based methods

Instance-specific definition

- The distance-based outlier score of an object x is its distance to its $k^{\text {th }}$ nearest neighbor
- In this example of a small group of 4 outliers, we can set $k>3$

Problem: computational cost

- The distance-based outlier score of an object x is its distance to its $\mathrm{k}^{\text {th }}$ nearest neighbor
- In principle this requires $\mathrm{O}\left(\mathrm{n}^{2}\right)$ computations!
- Index structure: useful only for cases of low data dimensionality
- Pruning tricks:
useful when only top-r outliers are needed

Problem: computational cost

The distance-based outlier score of an item x is its distance to its $k^{\text {th }}$ nearest neighbor
. In principle this requires:

- $O\left(n^{2}\right)$ computations for evaluating the $\mathrm{n} \times \mathrm{n}$ distance matrix
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ computations for finding the r smallest values on each row

Pruning method: sampling

- Evaluate $\mathrm{s} \times \mathrm{n}$ distances
- For points
1...s we are OK
. For points (s+1)...n we know only upper

n

Pruning method: sampling (cont.)

From points
1...s we already know the r "winners"
($r \leq s$ nodes with the larger distance to their $\mathrm{k}^{\text {th }}$ nearest neighbor)
Any point having

$V_{k}<L_{s}$ cannot be among the top r outliers

Pruning method: sampling (cont.)

From points
1...s we already know the r "winners"
($r \leq s$ nodes with the larger distance to their $\mathrm{k}^{\text {th }}$ nearest neighbor)
Any point having

$V_{k}<L_{s}$ cannot be among the top r outliers

Pruning method: sampling (cont.)

Remove points having $\widehat{V_{k}} \leq L_{r}$

Update L_{r} keeping r largest values, and
 stop computing for a row if one already finds k nearest neighbors in that row that are all below distance L_{r}

Local outlier factor

Local Outlier Factor (LOF)

. Let $V_{k}(X)$ be the distance of X to its k-nearest neighbor
. Reachability distance

$$
R_{k}(\bar{X}, \bar{Y})=\max \left\{\operatorname{Dist}(\bar{X}, \bar{Y}), V_{k}(\bar{Y})\right\}
$$

Local Outlier Factor (LOF) (cont.)

- $V_{k}(X)$: distance of X to its k-nearest neighbor
- Reachability distance

$$
R_{k}(\bar{X}, \bar{Y})=\max \left\{\operatorname{Dist}(\bar{X}, \bar{Y}), V_{k}(\bar{Y})\right\}
$$

- Not symmetric
- Equal to simple distance for long distances
- Smoothed by $V_{k}(X)$ for short distances

Local Outlier Factor (LOF) (cont.)

. Reachability distance

$$
R_{k}(\bar{X}, \bar{Y})=\max \left\{\operatorname{Dist}(\bar{X}, \bar{Y}), V_{k}(\bar{Y})\right\}
$$

. Average reachability distance

$$
A R_{k}(\bar{X})=\underset{\bar{Y} \in L_{k}(\bar{X})}{E}\left[R_{k}(\bar{X}, \bar{Y})\right]
$$

- $L_{k}(X)$ is the set of points within distance $V_{k}(X)$ of X (might be more than k due to ties)

Local Outlier Factor (LOF) (cont.)

$$
\begin{aligned}
R_{k}(\bar{X}, \bar{Y}) & =\max \left\{\operatorname{Dist}(\bar{X}, \bar{Y}), V_{k}(\bar{Y})\right\} \\
A R_{k}(\bar{X}) & =\underset{\bar{Y} \in L_{k}(\bar{X})}{E}\left[R_{k}(\bar{X}, \bar{Y})\right]
\end{aligned}
$$

- Local outlier factor

$$
\operatorname{LOF}_{k}(\bar{X})=\underset{\bar{Y} \in L_{k}(\bar{X})}{E} \frac{A R_{k}(\bar{X})}{A R_{k}(\bar{Y})}
$$

Outlier score $\max _{k} \operatorname{LOF}_{k}(\bar{X})$

- Large for outliers, close to 1 for others

Local Outlier Factor (LOF) (cont.)

. Local outlier factor

$$
\operatorname{LOF}_{k}(\bar{X})=\underset{\bar{Y} \in L_{k}(\bar{X})}{E} \frac{A R_{k}(\bar{X})}{A R_{k}(\bar{Y})}
$$

- LOF values for points inside a cluster are close to one if cluster is homogeneous
- LOF values much higher for outliers: they are computed in terms of average distances of near-by clusters

Exercise

compare outlier score LOF(u), LOF(v)

Let $\mathrm{k}=2$
$\operatorname{LOF}_{2}(\mathrm{u})=\mathrm{E}\left[\left\{\mathrm{AR}_{2}(\mathrm{u}) / \mathrm{AR}_{2}(\mathrm{a}), \mathrm{AR}_{2}(\mathrm{u}) / \mathrm{AR}_{2}(\mathrm{~b})\right\}\right]=$ \qquad

$$
\operatorname{LOF}_{k}(\bar{X})=\underset{\bar{Y} \in L_{k}(\bar{X})}{E} \frac{A R_{k}(\bar{X})}{A R_{k}(\bar{Y})}
$$

$A R_{2}(u)=E\left[\left\{R_{k}(u, a), R_{k}(u, b)\right\}\right]=$ \qquad
\qquad

$$
A R_{k}(\bar{X})=\underset{\bar{Y} \in L_{k}(\bar{X})}{E}\left[R_{k}(\bar{X}, \bar{Y})\right]
$$

$A R_{2}(a)=E\left[\left\{R_{k}(a, u), R_{k}(a, b)\right\}\right]=$ \qquad
$A R_{2}(b)=E\left[\left\{R_{k}(b, u), R_{k}(b, a)\right\}\right]=$ \qquad
$R_{k}(a, u)=$ \qquad ; $R_{k}(a, b)=$ \qquad ; $R_{k}(b, u)=$ \qquad ; $R_{k}(b, a)=$ \qquad
$R_{k}(u, a)=$ \qquad ; $R_{k}(u, b)=$ \qquad ; $R_{k}(v, b)=$ \qquad ; $R_{k}(v, u)=$ \qquad $R_{k}(\bar{X}, \bar{Y})=\max \left\{\operatorname{Dist}(\bar{X}, \bar{Y}), V_{k}(\bar{Y})\right\}$
$\mathrm{V}_{2}=$ distance to $2^{\text {nd }}$ nearest neighbor: $\mathrm{V}_{2}(\mathrm{u})=$ \qquad ; $\mathrm{V}_{2}(\mathrm{v})=$ \qquad ; $\mathrm{V}_{2}(\mathrm{a})=$ \qquad ; $\mathrm{V}_{2}(\mathrm{~b})=$

Answer

- Let $\mathrm{k}=2$
- $\operatorname{LOF}_{2}(\mathrm{u})=\mathrm{E}\left[\left\{\mathrm{AR}_{2}(\mathrm{u}) / \mathrm{AR}_{2}(\mathrm{a}), \mathrm{AR}_{2}(\mathrm{u}) / \mathrm{AR}_{2}(\mathrm{~b})\right\}\right]=(1.33+1.33) / 2=1.33$
- $\mathrm{LOF}_{2}(\mathrm{v})=\mathrm{E}\left[\left\{\mathrm{AR}_{2}(\mathrm{v}) / \mathrm{AR}_{2}(\mathrm{~b}), \mathrm{AR}_{2}(\mathrm{v}) / \mathrm{AR}_{2}(\mathrm{u})\right\}\right]=(3+2.25) / 2=\operatorname{LOF}_{k}(\bar{X})=\underset{\bar{Y} \in L_{k}(\bar{X})}{E} \frac{A R_{k}(\bar{X})}{A R_{k}(\bar{Y})}$
- $A R_{2}(u)=E\left[\left\{R_{k}(u, a), R_{k}(u, b)\right\}\right]=2$
- $\quad A R_{2}(v)=E\left[\left\{R_{k}(v, b), R_{k}(v, u)\right\}\right]=4.5$
- $\quad \operatorname{AR}_{2}(a)=E\left[\left\{R_{k}(a, u), R_{k}(a, b)\right\}\right]=1.5$

$$
A R_{k}(\bar{X})=\underset{\bar{Y} \in L_{k}(\bar{X})}{E}\left[R_{k}(\bar{X}, \bar{Y})\right]
$$

- $\quad A R_{2}(b)=E\left[\left\{R_{k}(b, u), R_{k}(b, a)\right\}\right]=1.5$
- $R_{k}(a, u)=1 ; R_{k}(a, b)=2 ; R_{k}(b, u)=1 ; R_{k}(b, a)=2$
- $\mathrm{R}_{\mathrm{k}}(\mathrm{u}, \mathrm{a})=2 ; \mathrm{R}_{\mathrm{k}}(\mathrm{u}, \mathrm{b})=2 ; \mathrm{R}_{\mathrm{k}}(\mathrm{v}, \mathrm{b})=4 ; \mathrm{R}_{\mathrm{k}}(\mathrm{v}, \mathrm{u})=5 \quad R_{k}(\bar{X}, \bar{Y})=\max \left\{\operatorname{Dist}(\bar{X}, \bar{Y}), V_{k}(\bar{Y})\right\}$
- $\mathrm{V}_{2}=$ distance to $2^{\text {nd }}$ nearest neighbor: $\mathrm{V}_{2}(\mathrm{u})=1 ; \mathrm{V}_{2}(\mathrm{v})=5 ; \mathrm{V}_{2}(\mathrm{a})=2 ; \mathrm{V}_{2}(\mathrm{~b})=2$

