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Outlier Detection:
Density and Partition-Based

Mining Massive Datasets
Materials provided by Prof. Carlos Castillo — https://chato.cl/teach
Instructor: Dr. Teodora Sandra Buda — https://tbuda.qithub.io/



https://chato.cl/teach
https://tbuda.github.io/

Sources

Liu, F. T,, Ting, K. M., & Zhou, Z. H. Isolation forest. ICDM 2008.

(1) Eryk Lewinson: Qutlier detection with isolation forest (2018)
(2) Tobias Sterbak: Detecting network attacks with isolation forests (2018)



https://towardsdatascience.com/outlier-detection-with-isolation-forest-3d190448d45e
https://www.depends-on-the-definition.com/detecting-network-attacks-with-isolation-forests/

Density-based methods



Density-based methods

. Key idea: 1]
find sparse regions in
the data

. Limitation:
cannot handle variations
of density
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Histogram- and grid-based methods

Histogram-based method:

1. Put data into bins

2. Outlier score: num — 1,
where num is the number of

51 1
0
-3 -2 -1 0 1 2 3 4

items in the same bin
Clear outliers are alone or almost alone in a bin



Histogram- and grid-based methods

Grid-based method

1. Put data into a grid iy

2. Outlier score: num — 1,

L L) lﬁ.

where num is the number of
items in the same cell

- |
l."

Clear outliers are alone or almost alone in a cell




Problems with grid-based methods

. How to choose the grid size?

Grid size should be chosen
considering data density,
but density might vary
across regions

If dimensionality is high, then
most cells will be empty

..l. l‘.

- |
l.'$




Kernel-based methods

. K. is a function peaking at X, with bandwidth h

. For instance, a Gaussian kernel:

®/(2h?)

Kh(X = X,) = (\/% | h)d x=



Kernel-based methods (cont.)

Example with a Gaussian kernel
- X=<-21,-13-04,1.9, 5.1, 6.2 >

Each Kh In red Histogram

0.15

. f=sum of Kh in blue

0.10

fX) == 3" Ku(X - X0)

Density function

0.05

0.00

[Wikipedia: Kernel density estimation]

T
10

Density function

0.05 0.10 0.15

0.00

Kernel density est.



https://en.wikipedia.org/wiki/Kernel_density_estimation

Information-theoretic models

° DeSCrIbe “ABABABABABABABABABABABABABABABABAB”

- “AB” 17 times

o Describe “ABABACABABABABABABABABABABABABABAB

- Minimum description length increased

Information-theoretic models: learn a model, then look at
Increases in model size due to a data point



Partitioning-based method:
Isolation forest



|Isolation forest method

. tree_build(X)
- Pick a random dimension r of dataset X
- Pick a random point p in [min (X), max (X)]

- Divide the data into two pieces: x <p and x = p

Recursively process each piece



Stopping criteria for recursion

. Stop when a maximum depth has been reached
_Or_

. Stop when each point is alone in one partition



Key: outliers lie at small depths

- 4-
F o,
3- 3-
2- 2- r
1- 1-
o 0 o q 5 o
_1- _1_
-2- -2
. -3
-4 A ' ' ' v =44 ' ' ' '
-4 -2 0 2 4 -4 -2 0 2 A
(a) Anomaly point (b) Nominal point

https://towardsdatascience.com/outlier-detection-with-extended-isolation-forest-1e248a3fe97b


https://towardsdatascience.com/outlier-detection-with-extended-isolation-forest-1e248a3fe97b

Qutlier score

. Let c(n) be the average path length of an unsuccessful
search in a binary tree of n items

"1
c(n) = 2H(n — 1) — (2(n — 1)/n) H(n)=)
k=1

. h(x) is the depth at which x is found in tree

. Score;:

, _ BE(h())
outlier(z,n) =2 <™



Outlier scores in isolation forests
(each tree is built from a sub-sample of original data)

[Forest

/'

S
Scores () () ses ses [Tree
Qutlier
Normal uncommon  _
samples 0.5°
[

Normal common
samples

https://donghwa-kim.qithub.io/iforest.html



https://donghwa-kim.github.io/iforest.html

(a) Single blob

(Note: here lines cross each other:
we do not cross lines)

15.0-
12.5-

10.0-

1.5

5.0-

2.5

(b) Multiple Blobs



Extended Isolation Forest

More freedom to partitioning by choosing a random
slope and a random intercept
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(a) Anomaly (b) Nominal

https://towardsdatascience.com/outlier-detection-with-extended-isolation-forest-1e248a3fe97b



https://towardsdatascience.com/outlier-detection-with-extended-isolation-forest-1e248a3fe97b

Exercise: isolation forest

2 3 4 5 6 7 8

Create one tree of the isolation forest by repeating 4
times:

Picking a sector containing >1 element

Picking a random dimension

Picking a random cut-off between min and max value
along that dimension

Draw the line of your cut — do not cross lines, and label
each line with a number 0, 1, 2, ...

Stop when each point is isolated

This is normally repeated several times, in the end:

, _ B(h(x)
outlier(xz,n) =2~ <

1
2
3
4
5
Label each point with its depth h(x) 6
7
8
9
=4

In this case ¢(10) = 2xH(9) — (2x9/10) = 3.857




2 3 4 5 6 7 8
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Dimension X,

Example answer 1 234 56 78 9

Let A = original data

1 First cut, applied over A

Randomly pick dimension: x,

In part A along dimension x,, min=2, max=9
Randomly pick cutin [2,9]: 7

LetB=A(x, <7)

LetC=A(x,27)

2 Second cut, applied over B

Randomly pick dimension: x,

In part B along dimension x,, min = 2, max=3
Randomly pick cutin[2,3]: 3

Let D=B(x, <3)

LetE=B(x, 2 3)

3 Third cut, applied over C

Randomly pick dimension: x,

In part C along dimension x,, min=3, max=9
Randomly pick cutin [3,9]: 8

Let F=C(x, < 8)

Let G=C(x, = 8)

iImension

D
© © N & g~ WON =

3
h(j) = 3 (three cuts to isolate)



Summary



Things to remember

. Density-based methods
. Isolation forest



Exercises for TT19-TT21

. Data Mining, The Textbook (2015) by Charu
Aggarwal

- Exercises 8.11 — all except 10, 15, 16, 17



Additional contents
(not included in exams)

EX IRA




Distance-based methods



Instance-specific definition

. The distance-based outlier score of an object x
is its distance to its k" nearest neighbor

. In this example of a
small group of 4 |
outliers, we can set




Problem: computational cost

. The distance-based outlier score of an object x is its
distance to its k" nearest neighbor

. In principle this requires O(n?) computations!

- Index structure:
useful only for cases of low data dimensionality

— Pruning tricks:
useful when only top-r outliers are needed



Problem: computational cost

. The distance-based outlier

score of an item x is its
distance to its k" nearest
neighbor

In principle this requires:

— O(n?) computations for
evaluating the n x n distance
matrix

— 0O(n?) computations for
finding the r smallest values
on each row

g

n-

Vi (X5)

\/

|

)/
Distance to k™
nearest neighbor



Pruning method: sampling

. Evaluate s x n

distances

For points

1...s we are OK

. For points (s+17)...n

/

S<

we know only upper

bounds




Pruning method: sampling (cont.)

From points _
1...s we already know the )
r “‘winners”

(r<s nodes with the larger
distance to their k™"
nearest neighbor)

Any point having

V, <L_cannot be among
the top r outliers

Ve(X7) )

.

~ L, < min

Vk; (XS)J

—

Vie(Xs41) > Vi (Xs41)

Vi(X0)

> Vie(Xn)



Pruning method: sampling (cont.)

From points _
1...s we already know the
r “‘winners”

(r<s nodes with the larger
distance to their k™"

Ve(X7) )

~ L, < min

nearest neighbor)

Any point having
V, <L_cannot be among
the top r outliers




Pruning method: sampling (cont.)

Remove Bgints - Ve (7))
having V1, < . S- ~ L, < min

Vie(Xs)
Update L _keeping Vo(Xor1) > Vi(Xor1)
r largest values, and
stop computing for a g _
row if one already finds N

K nearest neighbors in that row

that are all below distance L




Local outlier factor



Local Outlier Factor (LOF)

. Let V,(X) be the distance of X to its k-nearest neighbor

. Reachability distance

Ri(X,Y) = max{Dist(X,Y), Vi(Y)}



Local Outlier Factor (LOF) (cont.)

.V (X): distance of X to its k-nearest neighbor

. Reachability distance

Ri(X,Y) = max{Dist(X,Y), Vi (Y)}

'''''''

. Not symmetric O Q

. Equal to simple distance |
for long distances @ @ O |
. Smoothed by V, (X)

for short distances

St — =



Local Outlier Factor (LOF) (cont.)

. Reachabillity distance o -
Ri(X,Y) = max{Dist(X,Y), Vi (Y)}

. Average reachabillity distance

ARy(X)= E _|Ri(X,Y)]
YeL(X)
. L, (X) is the set of points within distance V, (X) of X

(might be more than k due to ties)



Local Outlier Factor (LOF) (cont.)

Ru(X

YY) = max{Dist(X,Y), V(Y)}
ARy (

) YELE(Y) [Rk(X’Y)}

Y
X

. Local outlier factor Outlier score

ARE(X) max LOF (X)

LOF, X) = B —
) ver,(X) ARE(Y) g

. Large for outliers, close to 1 for others



Local Outlier Factor (LOF) (cont.)

Local outlier factor
5 ARy (X)
Yer,x) ARL(Y)

LOF values for points inside a cluster are close
to one if cluster is homogeneous

LOF,(X) =

LOF values much higher for outliers: they are
computed in terms of average distances of
near-by clusters

POINTS RELATED
0.3} TO SPARSE
CLUSTER

X<—-OUTLIER B

; X<——OUTLIER A

0 01 02 03 04 05 06 07 08 09 1
FEATURE X



: @ @ ® @
Exercise S
compare outlier score LOF(u), LOF(v)
0 1 2 3 4 ) 6
Let k=2
LOF,(u) = E[{AR,(u) /AR (a), AR,(u)/AR,(b)}] = LOFL(X) = E AR,{(%)
LOF2(v) = E[{AR,(v) /AR (b), AR,(V)/AR (u)}] = ver,(X) ARk(Y)
AR,(u) = E[{R (u,a), R,(u,b) }] =
AR,(v) = E[{R,(vb), R(vu)}I=___ AR(X)=_ B _ [Rx(X,Y)]
YeL,(X)
AR,(a) = E[{R (a,u), R,(a,b) }] =
AR,(b) = E[{R (b,u), R,(b,a) }] =
R(u)=___ k(a,b) =_ sRbu=__ ;Rba=_____ o B
R(ua)=__ R (ub)= 'R, (vb) = R, (V) = Ri(X,Y) = max{Dist(X,Y), V(YY)
V, = distance to 2"d nearest neighbor: V JAu)=__ sV (v)=__ ;V,(a)=___ ;V,(b)=




3 4 5

Answer

Let k=2
LOF,(u) = E[ {AR(u) /AR (@), AR (u)/AR (b)}] = (1.33+1.33)/2 = 1.33
LOF(v) = E[ {AR,(v) /AR (b), AR,(V)/AR (u)}] = (3+2.25)/2 = LOF#(X) = - L’fg(y) AR(V)
AR (u) = E[ {R (u,a), R (u,b) }] = 2

AR,(v) = E[{R,(v,b), R (v,u) }] = 4.5 AR, (X)= E
AR (a) = E[{R (a,u), R (a,b) }] = 1.5 t

AR (b) = E[ {R (b,u), R (b,a) }] = 1.5

R (a,u)=1;,R (a,b)=2;R (b,u) =1;R (b,a) =2

R (u.a)=2; R (ub)=2; R (v,b) =4; R (v,u)=5 Ry (X,Y) = max{Dist(X,Y), Vi(Y)}
V, = distance to 2" nearest neighbor: V,(u)=1;V,(v)=5;V,(a)=2; V,(b)=2

e v b v
] i
o 1 2 6




