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Sources
Liu, F. T., Ting, K. M., & Zhou, Z. H. Isolation forest. ICDM 2008.

(1) Eryk Lewinson: Outlier detection with isolation forest (2018)
(2) Tobias Sterbak: Detecting network attacks with isolation forests (2018)

https://towardsdatascience.com/outlier-detection-with-isolation-forest-3d190448d45e
https://www.depends-on-the-definition.com/detecting-network-attacks-with-isolation-forests/


Density-based methods



Density-based methods

● Key idea:
find sparse regions in 
the data

● Limitation:
cannot handle variations 
of density



Histogram- and grid-based methods

Histogram-based method:

1. Put data into bins

2. Outlier score: num – 1,
where num is the number of
items in the same bin

Clear outliers are alone or almost alone in a bin



Histogram- and grid-based methods

Grid-based method

1. Put data into a grid

2. Outlier score: num – 1,
where num is the number of
items in the same cell

Clear outliers are alone or almost alone in a cell



Problems with grid-based methods

● How to choose the grid size?
● Grid size should be chosen 

considering data density,
but density might vary
across regions

● If dimensionality is high, then
most cells will be empty



Kernel-based methods
● Given n points 

● Kh is a function peaking at Xi  with bandwidth h

● For instance, a Gaussian kernel:



Kernel-based methods (cont.)
● Example with a Gaussian kernel

− X = < -2.1, -1.3, -0.4, 1.9, 5.1, 6.2 >

● Each Kh in red
● f = sum of Kh in blue

[Wikipedia: Kernel density estimation]

Histogram Kernel density est.

https://en.wikipedia.org/wiki/Kernel_density_estimation


Information-theoretic models

● Describe “ABABABABABABABABABABABABABABABABAB”

− “AB” 17 times

● Describe “ABABACABABABABABABABABABABABABABAB”

− Minimum description length increased

● Information-theoretic models: learn a model, then look at 
increases in model size due to a data point



Partitioning-based method:
isolation forest



Isolation forest method

● tree_build(X)
− Pick a random dimension r of dataset X

− Pick a random point p in [minr(X), maxr(X)]

− Divide the data into two pieces: xr < p and xr ≥ p

− Recursively process each piece



Stopping criteria for recursion

● Stop when a maximum depth has been reached

-or-

● Stop when each point is alone in one partition



Key: outliers lie at small depths

https://towardsdatascience.com/outlier-detection-with-extended-isolation-forest-1e248a3fe97b 

https://towardsdatascience.com/outlier-detection-with-extended-isolation-forest-1e248a3fe97b


Outlier score

● Let c(n) be the average path length of an unsuccessful 
search in a binary tree of n items

● h(x) is the depth at which x is found in tree

● Score:



Outlier scores in isolation forests
(each tree is built from a sub-sample of original data)

https://donghwa-kim.github.io/iforest.html 

https://donghwa-kim.github.io/iforest.html


Example (Note: here lines cross each other: 
we do not cross lines)



Extended Isolation Forest
● More freedom to partitioning by choosing a random 

slope and a random intercept

https://towardsdatascience.com/outlier-detection-with-extended-isolation-forest-1e248a3fe97b 

https://towardsdatascience.com/outlier-detection-with-extended-isolation-forest-1e248a3fe97b


Exercise: isolation forest
● Create one tree of the isolation forest by repeating 4 

times:

− Picking a sector containing >1 element

− Picking a random dimension

− Picking a random cut-off between min and max value 
along that dimension

− Draw the line of your cut — do not cross lines, and label 
each line with a number 0, 1, 2, ...

● Stop when each point is isolated

● Label each point with its depth h(x)

This is normally repeated several times, in the end:
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In this case c(10) = 2xH(9) – (2x9/10) ≃ 3.857 ≃ 4
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Example answer 1     2    3    4     5    6     7    8     9  
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● Let A = original data

● First cut, applied over A

− Randomly pick dimension: x1

− In part A along dimension x1, min=2, max=9

− Randomly pick cut in [2,9]: 7

− Let B = A(x1 < 7)

− Let C = A(x1 ≥ 7)

● Second cut, applied over B

− Randomly pick dimension: x1

− In part B along dimension x1, min = 2, max=3

− Randomly pick cut in [2,3]: 3

− Let D = B(x1 < 3)

− Let E = B(x1 ≥ 3)

● Third cut, applied over C

− Randomly pick dimension: x2

− In part C along dimension x2, min=3, max=9

− Randomly pick cut in [3,9]: 8

− Let F = C(x2 < 8)

− Let G = C(x2 ≥ 8)
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h(j) = 3 (three cuts to isolate)
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x1 < 7 x1 ≥ 7
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Summary



Things to remember

● Density-based methods
● Isolation forest



Exercises for TT19-TT21

● Data Mining, The Textbook (2015) by Charu 
Aggarwal
− Exercises 8.11 → all except 10, 15, 16, 17



Additional contents
(not included in exams)



Distance-based methods



Instance-specific definition

● The distance-based outlier score of an object x 
is its distance to its kth nearest neighbor

● In this example of a
small group of 4
outliers, we can set
k > 3



Problem: computational cost

● The distance-based outlier score of an object x is its 
distance to its kth nearest neighbor

● In principle this requires O(n2) computations!
− Index structure:

useful only for cases of low data dimensionality
− Pruning tricks:

useful when only top-r outliers are needed



Problem: computational cost
● The distance-based outlier 

score of an item x is its 
distance to its kth nearest 
neighbor

● In principle this requires:

− O(n2) computations for 
evaluating the n x n distance 
matrix

− O(n2) computations for 
finding the r smallest values 
on each row

n

n Distance to kth 
nearest neighbor



Pruning method: sampling
● Evaluate s x n 

distances

● For points
1...s we are OK

● For points (s+1)...n 
we know only upper 
bounds

s

n



Pruning method: sampling (cont.)
From points
1...s we already know the 
r “winners”
(r≤s nodes with the larger 
distance to their kth 
nearest neighbor)
Any point having
Vk < Ls cannot be among 
the top r outliers

s

n



Pruning method: sampling (cont.)
From points
1...s we already know the 
r “winners”
(r≤s nodes with the larger 
distance to their kth 
nearest neighbor)
Any point having
Vk < Ls cannot be among 
the top r outliers

s

n



Pruning method: sampling (cont.)
Remove points
having 

Update Lr keeping
r largest values, and
stop computing for a
row if one already finds
k nearest neighbors in that row 
that are all below distance Lr

s

n



Local outlier factor



Local Outlier Factor (LOF)

● Let Vk(X) be the distance of X to its k-nearest neighbor

● Reachability distance



Local Outlier Factor (LOF) (cont.)

● Vk(X): distance of X to its k-nearest neighbor

● Reachability distance

● Not symmetric
● Equal to simple distance 

for long distances
● Smoothed by Vk(X)

for short distances

YX



Local Outlier Factor (LOF) (cont.)

● Reachability distance

● Average reachability distance

● Lk(X) is the set of points within distance Vk(X) of X 
(might be more than k due to ties)



Local Outlier Factor (LOF) (cont.)

● Local outlier factor                                  Outlier score

● Large for outliers, close to 1 for others



Local Outlier Factor (LOF) (cont.)
● Local outlier factor

● LOF values for points inside a cluster are close 
to one if cluster is homogeneous

● LOF values much higher for outliers: they are 
computed in terms of average distances of 
near-by clusters



Exercise
compare outlier score LOF(u), LOF(v)

● Let k=2

● LOF2(u) = E[ {AR2(u) /AR2(a), AR2(u)/AR2(b)}] = _______

● LOF2(v) = E[ {AR2(v) /AR2(b), AR2(v)/AR2(u)}] = _______

● AR2(u) = E[ {Rk(u,a), Rk(u,b) }] = ______

● AR2(v) = E[ {Rk(v,b), Rk(v,u) }] = ______

● AR2(a) = E[ {Rk(a,u), Rk(a,b) }] = _____

● AR2(b) = E[ {Rk(b,u), Rk(b,a) }] = _____

● Rk(a,u) = ____; Rk(a,b) = ____; Rk(b,u) = _____; Rk(b,a) = ______

● Rk(u,a) = ____; Rk(u,b) = _____; Rk(v,b) = ______; Rk(v,u) = _____

● V2 = distance to 2nd nearest neighbor: V2(u) = ____ ; V2(v) = ____; V2(a) = ____ ; V2(b) = 
____

u va b

0 1 2 3 4 5 6



Answer
● Let k=2

● LOF2(u) = E[ {AR2(u) /AR2(a), AR2(u)/AR2(b)}] = (1.33+1.33)/2 = 1.33

● LOF2(v) = E[ {AR2(v) /AR2(b), AR2(v)/AR2(u)}] = (3+2.25)/2 = 2.63

● AR2(u) = E[ {Rk(u,a), Rk(u,b) }] = 2

● AR2(v) = E[ {Rk(v,b), Rk(v,u) }] = 4.5

● AR2(a) = E[ {Rk(a,u), Rk(a,b) }] = 1.5

● AR2(b) = E[ {Rk(b,u), Rk(b,a) }] = 1.5

● Rk(a,u) = 1; Rk(a,b) = 2; Rk(b,u) = 1; Rk(b,a) = 2

● Rk(u,a) = 2; Rk(u,b) = 2; Rk(v,b) = 4; Rk(v,u) = 5

● V2 = distance to 2nd nearest neighbor: V2(u) = 1; V2(v) = 5; V2(a) = 2 ; V2(b) = 2

u va b
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