Recommender Systems:

 Latent-Factors Based
Mining Massive Datasets

Materials provided by Prof. Carlos Castillo - https://chato.cl/teach Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Section 18.5) - slides by Lijun Zhang
- Mining of Massive Datasets $2^{\text {nd }}$ edition (2014) by Leskovec et al. (Chapter 9) - slides \underline{A}, \underline{B}

Key idea

- Summarize the correlations across rows and columns in the form of lower dimensional vectors, or latent factors
- These latent factors become hidden variables that encode the correlations in the data matrix in a concise way and can be used to make predictions
- Estimation of the k-dimensional dominant latent factors is often possible even from incompletely specified data

Modeling

- n users: $\overline{U_{1}}, \ldots, \overline{U_{n}} \in \mathbb{R}^{k}$
- d items: $\overline{I_{1}}, \ldots, \overline{I_{d}} \in \mathbb{R}^{k}$
- Approximate rating $r_{i j}$ by

$$
r_{i j} \approx\left\langle\overline{U_{i}}, \overline{I_{j}}\right\rangle={\overline{U_{i}}}^{T} \overline{I_{j}}={\overline{I_{j}}}^{T} \overline{U_{i}}
$$

- Approximate rating matrix $D=\left[r_{i j}\right]_{n \times d}$

$$
\begin{array}{ll}
D \approx F_{\text {user }} F_{\text {item }}^{T} & F_{\text {user }} \in \mathbb{R}^{n \times k} \\
& F_{\text {item }} \in \mathbb{R}^{d \times k}
\end{array}
$$

Matrix factorization

. Factorizing D into U and V

$$
D \approx U V^{T}
$$

- Objective when D is fully observed

$$
\min \left\|D-U V^{T}\right\|_{F}^{2}
$$

- Objective when D is partially observed

$$
\|A\|_{F}=\sqrt{\sum_{i, j} a_{i j}^{2}}
$$

Ω is the set. ${ }^{\min } \sum_{(i, j) \in \Omega}\left(D_{i j}-{\overline{U_{i}}}^{T} \overline{V_{j}}\right)^{2}$

Non-negative, regularized matrix factorization

- Matrix factorization $D \approx U V^{T}$
- Objective:

$$
\min \sum_{(i, j) \subset 0}\left(D_{i j}-{\overline{U_{i}}}^{T} \overline{V_{j}}\right)^{2}+\lambda\left(\|U\|_{F}^{2}+\|V\|_{F}^{2}\right)
$$

Ω is the set of observed cells in the matrix

- $\mathrm{U} \geq 0, \mathrm{~V} \geq 0$

Example: grocery shopping

Example: grocery shopping

	John	Alice	Mary	Greg	Peter	Jennifer		
Vegetables	0	1	0	1	2	2		
Fruits	2	3	1	1	2	2		This purchase history indicates the number of time each person has purchased an item
Sweets	1	1	1	0	1	1		. For clarity we're dealing with
Bread	0	2	3	4	1	1	categories of items, but they can be the items themselves	
Coffee	0	0	0	0	1	0		

In Python

Python code

	John	Alice	Mary	Greg	Peter	Jennifer
Vegetables	0	1	0	1	2	2
Fruits	2	3	1	1	2	2
Sweets	1	1	1	0	1	1
Bread	0	2	3	4	1	1
Coffee	0	0	0	0	1	0

$$
\begin{aligned}
& \text { V = np.array }(\\
& \quad[0,1,0,1,2,2], \\
& \quad[2,3,1,1,2,2], \\
& \\
& \quad[1,1,1,0,1,1], \\
& \\
& {[0,2,3,4,1,1],} \\
& \text { (0,0,0,0,1,0]]) } \\
& \text { V }=\text { pd.DataFrame(V, columns=['John', 'Alice', } \\
& \text { Mary', 'Greg', 'Peter', 'Jennifer']) } \\
& \text { V.index = ['Vegetables', 'Fruits', 'Sweets', } \\
& \text { 'Bread', 'Coffee'] }
\end{aligned}
$$

This example (2018) by Piotr Gabrys

Matrix factorization $(\mathrm{V} \simeq \mathrm{WH})$

Matrix W (items x factors) with possible names for each factor added for legibility

Fruits pickers Bread eaters Veggies

Vegetables	0.00	0.04	2.74
Fruits	1.93	0.15	0.47
Sweets	0.97	0.00	0.00
Bread	0.00	2.66	1.18
Coffee	0.00	0.00	0.59

Python code

from sklearn.decomposition import NMF
nmf = NMF(3) nmf.fit(V)

H = pd.DataFrame(np.round(nmf.components _,2), columns=V.columns) H.index = ['Fruits pickers', 'Bread eaters', 'Veggies']

W =
pd.DataFrame(np.round(nmf.transform(
V),2), columns=H.index)
W.index = V.index

This example (2018) by Piotr Gabrys

Matrix W (items x factors)

Fruits pickers Bread eaters Veggies

Vegetables	0.00	0.04	2.74
Fruits	1.93	0.15	0.47
Sweets	0.97	0.00	0.00
Bread	0.00	2.66	1.18
Coffee	0.00	0.00	0.59

Possible names for each factor added for legibility: these names are not needed for the method to work

Matrix H (factors x people)
John Alice Mary Greg Peter Jennifer

Fruits pickers	1.04	1.34	0.55	0.26	0.89	0.90
Bread eaters	0.00	0.60	1.12	1.36	0.03	0.07
Veggies	0.00	0.35	0.00	0.34	0.77	0.69

Reconstruction

Original matrix (V)

	John	Alice	Mary	Greg	Peter	Jennifer
Vegetables	0	1	0	1	2	2
Fruits	2	3	1	1	2	2
Sweets	1	1	1	0	1	1
Bread	0	2	3	4	1	1
Coffee	0	0	0	0	1	0

Reconstructed matrix (W H)

	John	Alice	Mary	Greg	Peter	Jennifer
Vegetables	0.00	0.98	0.04	0.99	2.11	1.89
Fruits	2.01	2.84	1.23	0.87	2.08	2.07
Sweets	1.01	1.30	0.53	0.25	0.86	0.87
Bread	0.00	2.01	2.98	4.02	0.99	1.00
Coffee	0.00	0.21	0.00	0.20	0.45	0.41

```
reconstructed = pd.DataFrame(np.round(np.dot(W,H),2), columns=V.columns)
reconstructed.index = V.index
```

This example (2018) by Piotr Gabrys

Recommendation

	Original matrix (V)							Reconstructed matrix (W H)					
	John	Alice	Mary	Greg	Peter	Jennifer		John	Alice	Mary	Greg	Peter	Jennifer
Vegetables	0	1	0	1	2	2	Vegetables	0.00	0.98	0.04	0.99	2.11	1.89
Fruits	2	3	1	1	2	2	Fruits	2.01	2.84	1.23	0.87	2.08	2.07
Sweets	1	1	1	0	1	1	Sweets	1.01	1.30	0.53	0.25	0.86	0.87
Bread	0	2	3	4	1	1	Bread	0.00	2.01	2.98	4.02	0.99	1.00
Coffee	0	0	0	0	1	0	Coffee	0.00	0.21	0.00	0.20	0.45	0.41

If you were to recommend one product to someone, what would you recommend and to whom?

Evaluation

Direct evaluation

- Randomized controlled experiment
- Renamed A/B testing for ... reasons
- People are split randomly in control/experimental
- Control group: receives one type of recommendation
- Experimental group: receives another type
- Metrics such as CTR, retention, etc.
- Requires infrastructure, users, policies

Evaluating with existing data

movies

1	3	4			
	3	5			5
		4	5		5
		3			
		3			
2			2		2
				5	
	2	1			1
	3			3	
1					

Mining of Massive Datasets $2^{\text {nd }}$ edition (2014) by Leskovec et al. (Chapter 9) - slides $\underline{A}, \underline{B}$

Evaluating with existing data

movies

Mining of Massive Datasets $2^{\text {nd }}$ edition (2014) by Leskovec et al. (Chapter 9) - slides $\underline{A}, \underline{B}$

Evaluation metrics

- RMSE (root of mean of squared errors)

$$
\sqrt{E\left[(x-\hat{x})^{2}\right]}
$$

- Precision @ k
- \% of recommendations that are correct among those in the top k positions
- Rank correlation
- Spearman's correlation between system and user

Evaluating is hard

. Accuracy is not all

- We also want diversity
. We want to be contextually sensitive
. The order of predictions matters
. RMSE might penalize a method that does well for high ratings but bad for others

Summary

Things to remember

- Interaction-based recommendations
- Latent factors based
. Evaluation methods

Exercises for TT16-TT18

- Mining of Massive Datasets $2^{\text {nd }}$ edition (2014) by Leskovec et al. Note that some exercises cover advanced concepts:
- Exercises 9.2.8
- Exercises 9.3.4
- Exercises 9.4.6

Additional contents (not included in exams)

Example 2: Netflix prize

Example 2: Netflix prize (2009)

Netflix offered \$1,000,000 to anyone beating their algorithm by 10\% in RMSE

Provided 100M (user,movie) ratings for training

Held a testing set and allowed one guess/day on the testing set to create a leader board

NETFLIX

Neर्tulter Prize

Home Rules Leaderboard Register Update Submit oowmioad

Display top 20 leaders

Rank	Team Name	Best Score	\% Improvement	Last Submit Time
1	Bellkor's Prammatic Chaos	0.8558	10.05	2009-06-26 18:42:37
Grand Prize - RMSE $<=0.8563$				
2	PragmaticTheory	0.8582	9.80	2009-06-25 22:15:51
3	Bellkor in BlaChaos	0.8590	9.71	2009-05-13 08.14.09
4	Grand Prize Team	0.8593	9.68	2009-06-12 08.20:24
5	Dace	0.8604	9.56	2009-04-22 05:57:03
6	EigChaos	0.8513	9.47	2009-06-23 23:06:52
Prugess Prike2008-RHSE $=0.8616$ - Winning Team: Bellkor in DigChaus				
7	Bellkor	0.8620	9.40	2009-06-24 07:16:02
8	Gravily	0.8634	9.25	2009-04-22 18:31:32
9	opera Solutions	0.8638	9.21	2009-06-26 23:18:13
10	EruceDenalaocyrivou	0.8638	9.21	2009-06-27 00:55:55
11	penqpencziou	0.8638	9.21	2009-06-27 01:06:43
12	xivector	0.8639	9.20	2009-06-26 13.49:04
13	xangliang	0.8639	9.20	2009-06-26 07:47:34

Latent factors

In latent factor space, similar movies are mapped to similar points

Shortly before deadline ...

The big picture

solution of BellKor's Pragmatic Chaos

Netutix Prize

COOMPLETED]
tome

Leaderboard

26 July 2009.- Bellkor team submits 40 minutes before the deadline, "The Ensemble" team made of a mix of other teams submitted 20 minutes before the deadline.

