

Recommender Systems: Latent-Factors Based

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — <u>https://chato.cl/teach</u> Instructor: Dr. Teodora Sandra Buda — <u>https://tbuda.github.io/</u>

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Section 18.5) – <u>slides by Lijun Zhang</u>
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (<u>Chapter 9</u>) - slides <u>A</u>, <u>B</u>

Key idea

- Summarize the correlations across rows and columns in the form of lower dimensional vectors, or latent factors
- These latent factors become hidden variables that encode the correlations in the data matrix in a concise way and can be used to make predictions
- Estimation of the k-dimensional dominant latent factors is often possible even from **incompletely** specified data

Modeling

- *n* users: $\overline{U_1}, \ldots, \overline{U_n} \in \mathbb{R}^k$
- *d* items: $\overline{I_1}, \ldots, \overline{I_d} \in \mathbb{R}^k$
- Approximate rating r_{ij} by $r_{ij} \approx \langle \overline{U_i}, \overline{I_j} \rangle = \overline{U_i}^T \overline{I_j} = \overline{I_j}^T \overline{U_i}$
- Approximate rating matrix $D = [r_{ij}]_{n \times d}$

$$D \approx F_{\text{user}} F_{\text{item}}^T \qquad F_{\text{user}} \in \mathbb{R}^{n \times k}$$
$$F_{\text{item}} \in \mathbb{R}^{d \times k}$$

Matrix factorization

- . Factorizing D into U and V $D \approx UV^T$
- . Objective when D is fully observed
 - $\min \left\| D UV^T \right\|_F^2$ Objective when D is partially observed

$$- \prod_{(i,j)\in\Omega} \left(D_{ij} - \overline{U_i}^T \overline{V_j} \right)^2$$

Non-negative, regularized matrix factorization

- . Matrix factorization $D \approx UV^T$
- . Objective:

$$\min \sum_{(i,j)\in\Omega} \left(D_{ij} - \overline{U_i}^T \overline{V_j} \right)^2 + \lambda \left(\|U\|_F^2 + \|V\|_F^2 \right)$$

 $\boldsymbol{\Omega}$ is the set of observed cells in the matrix

 $- U \ge 0, V \ge 0$

Example: grocery shopping

Example: grocery shopping

	John	Alice	Mary	Greg	Peter	Jennifer
Vegetables	0	1	0	1	2	2
Fruits	2	3	1	1	2	2
Sweets	1	1	1	0	1	1
Bread	0	2	3	4	1	1
Coffee	0	0	0	0	1	0

- This purchase history indicates the number of time each person has purchased an item
- For clarity we're dealing with categories of items, but they can be the items themselves

In Python

Python code

	John	Alice	Mary	Greg	Peter	Jennifer
Vegetables	0	1	0	1	2	2
Fruits	2	3	1	1	2	2
Sweets	1	1	1	0	1	1
Bread	0	2	3	4	1	1
Coffee	0	0	0	0	1	0

V = pd.DataFrame(V, columns=['John', 'Alice', 'Mary', 'Greg', 'Peter', 'Jennifer'])

V.index = ['Vegetables', 'Fruits', 'Sweets',
'Bread', 'Coffee']

Matrix factorization (V ~ WH)

Matrix W (items x factors) with possible names for each factor added for legibility

	Fruits pickers	Bread eaters	Veggies
Vegetables	0.00	0.04	2.74
Fruits	1.93	0.15	0.47
Sweets	0.97	0.00	0.00
Bread	0.00	2.66	1.18
Coffee	0.00	0.00	0.59

Python code

from NMF	sklea	n.decor	nposition	import
nmf = nmf.f	= NMF() Fit(V)	3)		
H = pd.Da _,2), H.inc eater	ataFra colu lex = `S',	me(np.ro mns=V.co ['Fruits 'Veggies	ound(nmf.d olumns) s pickers' s']	components ', 'Bread
W = pd.Da V),2) W.inc	ataFra , col lex = `	me(np.ro umns=H.: /.index	ound(nmf.1 index)	transform(

Matrix W (items x factors)

	Fruits pickers	Bread eaters	Veggies
Vegetables	0.00	0.04	2.74
Fruits	1.93	0.15	0.47
Sweets	0.97	0.00	0.00
Bread	0.00	2.66	1.18
Coffee	0.00	0.00	0.59

Possible names for each factor added for legibility: these names are **not needed for the method to work**

Matrix H (factors x people)

	John	Alice	Mary	Greg	Peter	Jennifer
ruits pickers	1.04	1.34	0.55	0.26	0.89	0.90
Bread eaters	0.00	0.60	1.12	1.36	0.03	0.07
Veggies	0.00	<mark>0.35</mark>	0.00	<mark>0.34</mark>	0.77	<mark>0.6</mark> 9

Reconstruction

Original matrix (V)

Reconstructed matrix (W H)

	John	Alice	Mary	Greg	Peter	Jennifer		John	Alice	Mary	Greg	Peter	Jennifer
Vegetables	0	1	0	1	2	2	Vegetables	0.00	<mark>0.9</mark> 8	0.04	0.99	2.11	1.89
Fruits	2	3	1	1	2	2	Fruits	2.01	2.84	1.23	0.87	2.08	2.07
Sweets	1	1	1	0	1	1	Sweets	1.01	1.30	0.53	0.25	0.86	0.87
Bread	0	2	3	4	1	1	Bread	0.00	2.01	2.98	4.02	0.99	1.00
Coffee	0	0	0	0	1	0	Coffee	0.00	0.21	0.00	0.20	0.45	0.41

reconstructed = pd.DataFrame(np.round(np.dot(W,H),2), columns=V.columns)
reconstructed.index = V.index

Recommendation

Original matrix (V)

Reconstructed matrix (W H)

	John	Alice	Mary	Greg	Peter	Jennifer		John	Alice	Mary	Greg	Peter	Jennifer
Vegetables	0	1	0	1	2	2	Vegetables	0.00	0.98	0.04	0.99	2.11	1.89
Fruits	2	3	1	1	2	2	Fruits	2.01	2.84	1.23	0.87	2.08	2.07
Sweets	1	1	1	0	1	1	Sweets	1.01	1.30	0.53	0.25	0.86	0.87
Bread	0	2	3	4	1	1	Bread	0.00	2.01	<mark>2.98</mark>	4.02	0.99	1.00
Coffee	0	0	0	0	1	0	Coffee	0.00	0.21	0.00	0.20	0.45	0.41

If you were to recommend one product to someone, what would you recommend and to whom?

Evaluation

Direct evaluation

- Randomized controlled experiment
 - Renamed A/B testing for ... reasons
 - People are split randomly in control/experimental
 - Control group: receives one type of recommendation
 - Experimental group: receives another type
- Metrics such as CTR, retention, etc.
- Requires infrastructure, users, policies

Evaluating with existing data

movies

Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (<u>Chapter 9</u>) - slides <u>A</u>, <u>B</u>

Evaluating with existing data

movies

Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (<u>Chapter 9</u>) - slides <u>A</u>, <u>B</u>

Evaluation metrics

• RMSE (root of mean of squared errors)

$$\sqrt{E[(x-\hat{x})^2]}$$

- Precision @ k
 - % of recommendations that are correct among those in the top k positions
- Rank correlation
 - Spearman's correlation between system and user

Evaluating is hard

- . Accuracy is not all
- . We also want diversity
- . We want to be contextually sensitive
- . The order of predictions matters
- . RMSE might penalize a method that does well for high ratings but bad for others

Summary

Things to remember

- Interaction-based recommendations
 - Latent factors based
- Evaluation methods

Exercises for TT16-TT18

- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. Note that some exercises cover advanced concepts:
 - Exercises 9.2.8
 - Exercises 9.3.4
 - Exercises 9.4.6

Additional contents (not included in exams)

Example 2: Netflix prize

Example 2: Netflix prize (2009)

- Netflix offered \$1,000,000 to anyone beating their algorithm by 10% in **RMSE**
- Provided 100M (user, movie) ratings for training
- Held a testing set and allowed one guess/day on the testing set to create a leader board

NETFLIX

Netflix Prize

Home Rules Leaderboard Register Update Submit Download

Leaderboard

Display top 20 leaders

Rank 1	Team Name BellKor's Pragmatic Chaos	Best Score 0.8558	10.05	Last Submit Time 2009-06-26 18:42:37
Grand	Prize - RMSE <= 0.8563			
2	PragmaticTheory	0.8582	9.80	2009-06-25 22:15:51
3	BellKor in BloChaos	0.8590	9.71	2009-05-13 08:14:09
4	Grand Prize Team	0.8593	9.68	2009-06-12 08:20:24
5	Dace	0.8604	9.56	2009-04-22 05:57:03
6	BigChaos	0.8613	9.47	2009-06-23 23:06:52
Pregre	<u>ess Prize 2008</u> - RMSE - 0.8	616 - Winning To	eam: BellKor in BigC	haos
7	BellKor	0.8620	9.40	2009-06-24 07:16:02
8	Gravity	0.8634	9.25	2009-04-22 18:31:32
9	Opera Solutions	0.8638	9.21	2009-06-26 23:18:13
10	BruceDengDaoCiYiYou	0.8638	9.21	2009-06-27 00:55:55
11	pengpengzhou	0.8638	9.21	2009-06-27 01:06:43
12	xivector	0.8639	9.20	2009-06-26 13:49:04
13	xiangliang	0.8639	9.20	2009-06-26 07:47:34

Latent factors

In latent factor space, similar movies are mapped to similar points

Shortly before deadline ...

The big picture Solution of BellKor's Pragmatic Chaos

Leaderboard Rules

Update Download

Leaderboard

Showing Test Score, Click here to show guiz score

Display top 20 \$ leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grand	Prize - RMSE = 0.8567 - Winning Te	am: PellVoris Press	netic Chees	
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.0002	g	2000 07- 02 24.40
4	Opera Solutions and Vandelay United	0.8568	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	
6	PragmaticTheory	0.8594	9.77	

26 July 2009.- Bellkor team submits 40 minutes before the deadline, "The Ensemble" team made of a mix of other teams submitted 20 minutes before the deadline.

Bellkor team wins one million dollars

