

Recommender Systems: Interaction-Based

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — <u>https://chato.cl/teach</u> Instructor: Dr. Teodora Sandra Buda — <u>https://tbuda.github.io/</u>

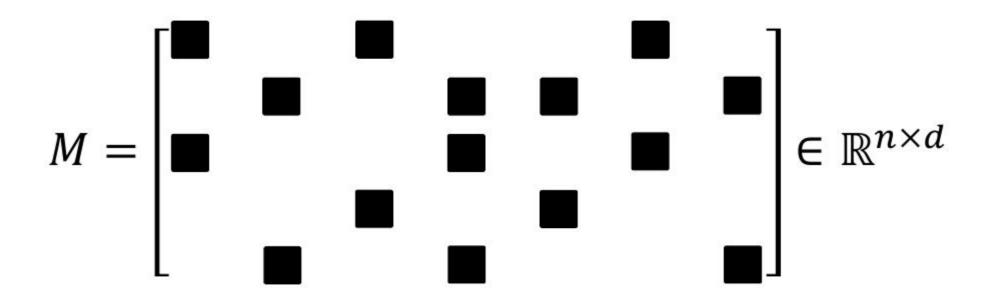
Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Section 18.5) – <u>slides by Lijun Zhang</u>
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (<u>Chapter 9</u>) - slides <u>A</u>, <u>B</u>

Interaction-based recommendations

Missing-value estimation/completion

. The matrix is extremely large and sparse



Only black squares have non-zero values.

Types of algorithms

- Neighborhood-Based Methods
 - User-Based or Item-Based Similarity with Ratings
- Graph-Based Methods
- Clustering Methods
 - Adapting k-Means Clustering or Adapting Co-Clustering
- Latent Factor Models
 - Matrix Factorization, e.g., Singular Value Decomposition

User-based similarity with ratings

- . Let $\boldsymbol{I}_{\boldsymbol{u},\boldsymbol{v}}$ be common ratings between two users
- . Similarity: Pearson correlation coefficient

$$\operatorname{sim}(u,v) = \frac{\sum_{i \in I_{u,v}} (u_i - \hat{u}) \cdot (v_i - \hat{v})}{\sqrt{\sum_{i \in I_{u,v}} (u_i - \hat{u})^2 \cdot \sum_{i \in I_{u,v}} (v_i - \hat{v})^2}}$$
$$\hat{u} = \frac{1}{|u|} \sum_{i=1}^{|u|} u_i \quad \hat{v} = \frac{1}{|v|} \sum_{i=1}^{|v|} v_i \qquad \begin{array}{c} \operatorname{Note: averages are taken} \\ \operatorname{over all elements, not only} \\ \operatorname{ones in common} \end{array}$$

User-based similarity with ratings (cont.) $\sum_{i=1}^{n} (y_i - \hat{y}) \cdot (y_i - \hat{y})$

$$\sin(u, v) = \frac{\sum_{i \in I_{u,v}} (u_i - u) \cdot (v_i - v)}{\sqrt{\sum_{i \in I_{u,v}} (u_i - \hat{u})^2 \cdot \sum_{i \in I_{u,v}} (v_i - \hat{v})^2}}$$

. Score of recommendation

$$\operatorname{score}(u,i) = \hat{u} + \frac{\sum_{v:v_i \neq \text{NULL}} \sin(v,u) \cdot (v_i - \hat{v})}{\sum_{v:I_{u,v} \neq \emptyset} |\sin(v,u)|}$$

Note: for efficiency one can take only the most similar users

Exercise

$$\sin(u, v) = \frac{\sum_{i \in I_{u,v}} (u_i - \hat{u}) \cdot (v_i - \hat{v})}{\sqrt{\sum_{i \in I_{u,v}} (u_i - \hat{u})^2 \cdot \sum_{i \in I_{u,v}} (v_i - \hat{v})^2}}}{\sum_{i \in I_{u,v}} (v_i - \hat{v})}$$

$$\operatorname{score}(u,i) = \hat{u} + \frac{\sum_{v:v_i \neq \text{NULL}} \operatorname{SIM}(v,u) \cdot (v_i - v)}{\sum_{v:I_{u,v} \neq \emptyset} |\sin(v,u)|}$$

Complete yellow cells in spreadsheet:

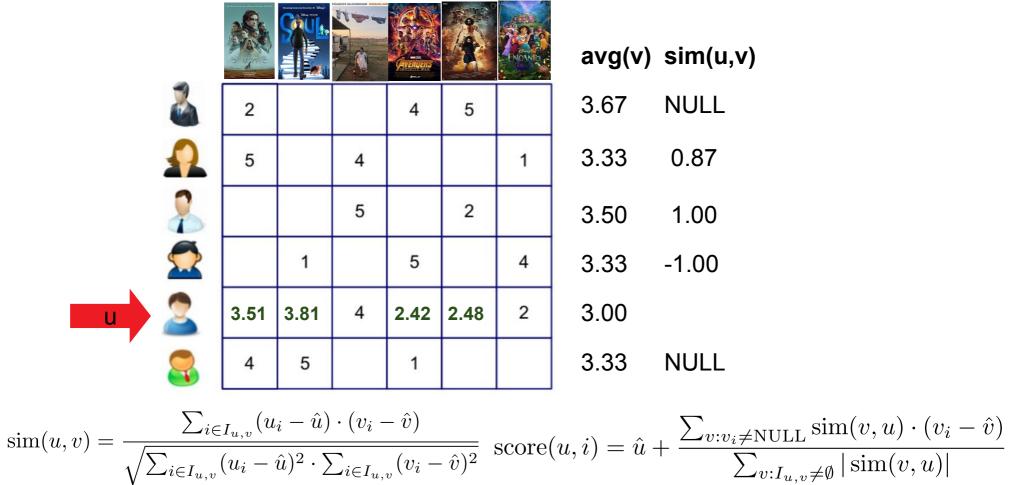
- 1. Similarities *sim(u,v)*
- 2. Predicted rating of all movies that user *u* has not seen yet
- 3. Which movie is recommended?

Spreadsheet link:

https://upfbarcelona.padlet.org/sandrabuda1/theory-exercises-tdmvfhddcnvfj5b8

Exercise from ML for Recommender Systems tutorial by Alex Karatzoglou, 2015.

Answer



Exercise from ML for Recommender Systems tutorial by Alex Karatzoglou. 2015.

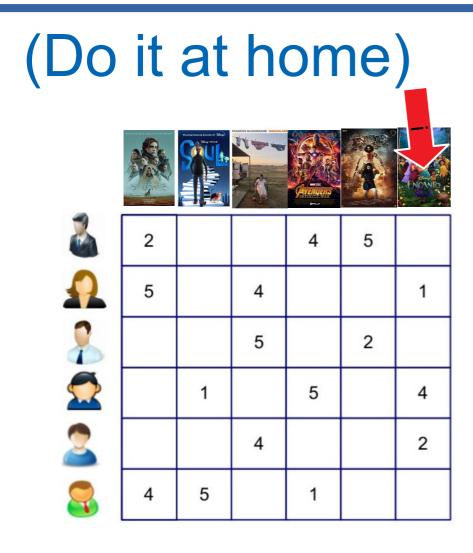
You can do the same with items!

. Item-based similarities with ratings

$$\sin(i,j) = \frac{\sum_{u \in I_{i,j}} (u_i - \hat{i}) \cdot (u_j - \hat{j})}{\sqrt{\sum_{u \in I_{i,j}} (u_i - \hat{i})^2 \cdot \sum_{u \in I_{i,j}} (u_j - \hat{j})^2}}$$

. Item-based recommendations

$$\operatorname{score}(u,i) = \hat{i} + \frac{\sum_{j:u_j \neq \text{NULL}} \sin(i,j) \cdot (u_j - \hat{j})}{\sum_{j:I_{i,j} \neq \emptyset} |\sin(i,j)|}$$



- 1. Compute avg(j) for all items
- 2. Compute sim(i,j) for all items for which there is some intersection with i
- 3. Compute score(u,i) for all users who

have not seen i yet

$$\operatorname{sim}(i,j) = \frac{\sum_{u \in I_{i,j}} (u_i - \hat{i}) \cdot (u_j - \hat{j})}{\sqrt{\sum_{u \in I_{i,j}} (u_i - \hat{i})^2 \cdot \sum_{u \in I_{i,j}} (u_j - \hat{j})^2}}$$
$$\operatorname{score}(u,i) = \hat{i} + \frac{\sum_{j:u_j \neq \text{NULL}} \operatorname{sim}(i,j) \cdot (u_j - \hat{j})}{\sum_{j:I_{i,j} \neq \emptyset} |\operatorname{sim}(i,j)|}$$

$$2.33 + \frac{-1 \cdot (2 - 3.66) + 1 \cdot (4 - 3.33)}{|-1| + |-1| + |0.86| + |1|} = 2.94$$

$$2.33 + \frac{0.86 \cdot (5 - 4.33)}{|-1| + |-1| + |0.86| + |1|} = 2.48$$

$$2.33 + \frac{-1 \cdot (4 - 3.66) - 1 \cdot (5 - 3) + 1 \cdot (1 - 3.33)}{|-1| + |-1| + |0.86| + |1|} = 1.12$$

$$\sin(i,j) = \frac{\sum_{u \in I_{i,j}} (u_i - \hat{i}) \cdot (u_j - \hat{j})}{\sqrt{\sum_{u \in I_{i,j}} (u_i - \hat{i})^2 \cdot \sum_{u \in I_{i,j}} (u_j - \hat{j})^2}}$$

$$\operatorname{score}(u,i) = \hat{i} + \frac{\sum_{j:u_j \neq \text{NULL}} \operatorname{sim}(i,j) \cdot (u_j - \hat{j})}{\sum_{j:I_{i,j} \neq \emptyset} |\operatorname{sim}(i,j)|}$$

Exercise from ML for Recommender Systems tutorial by Alex Karatzoglou, 2015.

Note

- . There are many ways of computing user-based similarity and item-based similarity
- . There are many ways of using these to generate recommendations
- . The method we have described is aware of the **bias of users**, in the sense of some users being more positive/negative than others in general

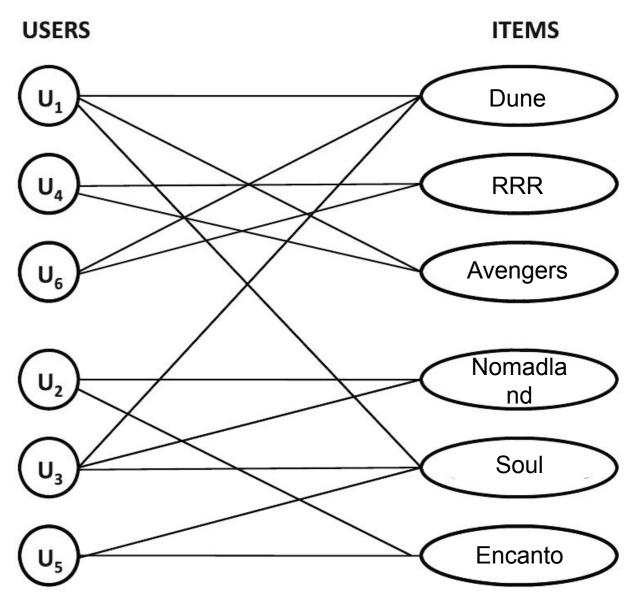
Graph- and clustering-based methods

Graph-based methods

- Bipartite user-item graph with nodes N_u U N_i
- . N_u users
 - N_u items

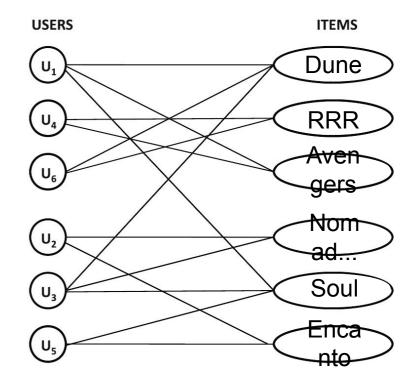
•

. Non-zero utility \Rightarrow edge



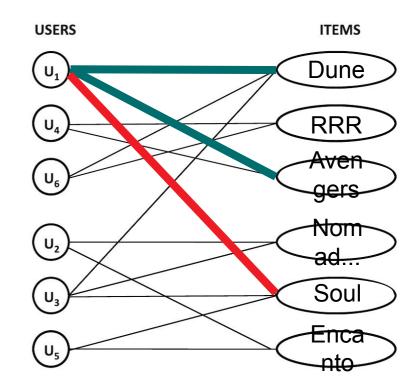
Graph-based methods (cont.)

- . Use graph-based methods
 - Random walk with restart to a user or item
 - SimRank (not seen in class)
- . Low "random jump" probability might favor popular items



Graph-based methods (cont.)

- . Signed networks can be used
 - Remember to interpret ratings with respect to user and item averages
 - Below average rating \Rightarrow -
 - Above average rating \Rightarrow +
- . Positive link prediction problem



Clustering methods

. Motivations

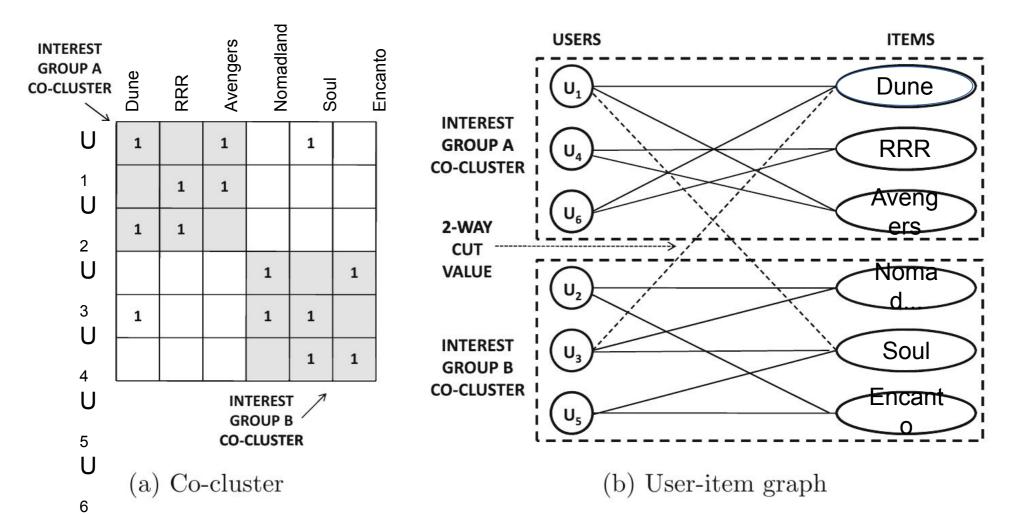
- Reduce computational cost
- To some extent address data sparsity
- . Results of clustering
 - Clusters of users for user-user similarity recs.
 - Clusters of items for item-item similarity recs.

Clustering methods (cont.)

. User-user recommendation approach

- Cluster users into groups
- For any user u, compute average normalized rating for each item i the user has not seen
- Report these ratings for (u,i)
- Same with item-item recommendations
- . Neighborhoods will be smaller

Co-Clustering Approach



Summary

Things to remember

- Interaction-based recommendations
 - User-based
 - Item-based
- Graph-based / clustering-based recommendations

Exercises for TT16-TT18

- . Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. Note that some exercises cover advanced concepts:
 - Exercises 9.2.8
 - Exercises 9.3.4
 - Exercises 9.4.6