

Recommender Systems

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — <u>https://chato.cl/teach</u> Instructor: Dr. Teodora Sandra Buda — <u>https://tbuda.github.io/</u>

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Section 18.5) – <u>slides by Lijun Zhang</u>
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (<u>Chapter 9</u>) - slides <u>A</u>, <u>B</u>

Recommender systems

- Product recommendation is perhaps one of the best known use cases:
 - Given data from user buying behaviors, profiles, interests, browsing behavior, buying behavior, and ratings about various items
 - Leverage such data to make recommendations to customers about possible buying interests

Recommender systems (general)

- . In general, the idea is:
 - Given data from user interests, including profiles, browsing behavior, item interaction behavior, ratings about various items
 - Leverage such data to make recommendations to users about further interesting items

YOUTUBE VIDEO RECOMMENDATION ALGORITHM "ThereareApp

Large scale engines for recommendation:

are composed of multiple layers,
use online and offline (batch) models,
include complex data pipelines to move behavioral and content signals around.

Utility matrix

- . Matrix D of size n (users) x d (items)
 - The utility value for a user-item pair (D_{ij}) describe some relationship between user i and item j
 - Typically, a small subset of the utility values are known

Example utility matrices

(a) Ratings-based

 1
 1

 b) Positive preference, e.g., "like"

Avengers RRR

Encanto

1

1

1

1

1

1

1

1

Types of utility

• Explicit: we ask users to rate items

 Implicit: we take watching/consuming/buying behavior as a positive signal, skip/hide as negative

Sources for a recommendation

Content-based recommendation

- Users and items are associated with features
- Features are matched to infer interest
- Interaction-based recommendations
 - Leverage user preferences in the form of ratings or other behavior
 - Recommend through similarity or latent factors

New items have no ratings and New users have no history

Photo: Torque News

Solution 1. "Side information"

Choose some artists you like.

Choose at least 3. We'll make some special playlists for you.

Q

Taylor Swift

MORE FOR YOU

Calvin Harris

Kendrick Lamar

Lorde

The Chainsmokers

ODESZA

Solution 2. "On-boarding" users

Touch the genres you like

Alternative/Indie

Blues

Classical

Content-based recommendations

General idea of content-based recommendations

- . Movies: recommend other movies with same director, actor, genre, as viewed ones
- Products: recommend other products in same category, brand, color, as purchased ones

Creating a recommendation

- User is associated with some documents that describe his/her interests
 - Specified demographic profile
 - Specified interests at registration time
 - Descriptions of the items bought
- Items are also associated with semi-structured descriptions

JBL GO lleva el sonido de calidad JBL a todas partes. GO es su solución de altavoz todo en uno y reproduce música en tiempo real vía Bluetooth desde smartphones y tabletas, gracias a su batería recargable. También cuenta con un práctico manos libres.

Potencia	3 W
Respuesta de Frecuencia	180Hz – 20 kHz
Tipo de altavoz	Portátil
Amplificador de sonido	Integrado

Creating a recommendation (cont.)

Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (<u>Chapter 9</u>) - slides <u>A</u>, <u>B</u>

Possible recommendation methods

• If no utility matrix is available

- k-nearest neighbor approach
 - Find the top-k items that are closest to the user (when items and users can be represented in the same space, e.g., dating apps)
- The cosine similarity with tf-idf can be used

• If a utility matrix is available

- Classification-based approach: training documents are those for which the user has specified utility, labels are utility values
- Regression-based approach in the case of ratings
- . Limitations: depends on the quality of the features

Example: regression-based approach for content-based recommendation

Movie	Adventure	Action	Science-Fiction	Drama	Crime	Thiller	User 1	User 2
Star Wars IV	1	1	1	0	0	0	1	-1
Saving Private Ryan	0	0	0	1	0	0		
American Beauty	0	0	0	1	0	0		
City of Gold	0	0	0	1	1	0	-1	1
Interstellar	0	0	1	1	0	0	1	
The Matrix	1	1	1	0	0	1		1

- -

We would do two regressions: one for the ratings of user 1 and another for user 2. (We can also do this for groups of users, e.g., by city and age)

How many rated movies would we need, as a minimum, to be able to do this?

Exercise Content-based recommender based on regression

- Database of ~100 electric scooters, of which 12 have been rated on a scale 1-5
- We have done linear regression on:
 - price [\$], battery capacity [Wh], range
 [km]
- Which would be your top-3 recommended scooter among the remaining ones?

Spreadsheet link: https://upfbarcelona.padlet.org/sandrabuda1/theory-exercises-tdmvfhddcnvfj5b8

Pros and Cons of content-based recommendations

- Pros:
 - No cold-start problem if no utility needed
 - Able to recommend to users with very particular tastes
 - Able to recommend new and obscure items
 - Able to provide explanations that are easily understandable

Pros and Cons of content-based recommendations

. Cons:

- Finding the correct features might be hard
- Recommending for new users still challenging if user features are different from item features
- Overspecialization/"bubble": might reinforce user interests
- Does not exploit ratings of other users!

Summary

Things to remember

- Content-based recommendations
- Regression-based method

Exercises for TT16-TT18

- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. Note that some exercises cover advanced concepts:
 - Exercises 9.2.8
 - Exercises 9.3.4
 - Exercises 9.4.6