
Association Rules Mining
Reducing Running Time

Mining Massive Datasets
Materials provided by Prof. Carlos Castillo — https://chato.cl/teach
Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

https://chato.cl/teach
https://tbuda.github.io/

Sources
● Data Mining, The Textbook (2015) by Charu Aggarwal

(Chapters 4, 5) – slides by Lijun Zhang
● Mining of Massive Datasets 2nd edition (2014) by

Leskovec et al. (Chapter 6) - slides
● Data Mining Concepts and Techniques, 3rd edition

(2011) by Han et al. (Chapter 6)
● Introduction to Data Mining 2nd edition (2019) by Tan et

al. (Chapters 5, 6) – slides ch5, slides ch6

https://cs.nju.edu.cn/zlj/Course/DM_15_Lecture/Lecture_4.pdf
http://infolab.stanford.edu/~ullman/mmds/ch6.pdf
http://www.mmds.org/mmds/v2.1/ch06-assocrules.pptx
https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap5-association_analysis.pdf
https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap6_advanced_association_analysis.pdf

Speeding up candidate generation

Speeding-up candidate generation:
level-wise pruning trick

● Let Fk be the set of frequent k-itemsets [we know they are
frequent]

● Let Ck+1 be the set of (k+1)-candidates [we do not know their
frequency]

● I ∊ Ck+1 is frequent only if all the k-subsets of I are frequent
● Pruning

− Generate all the k-subsets of I
− If any one of them does not belong to Fk, then remove I

Candidates generation
● A Naïve Approach

− Check all the possible combinations of frequent itemsets

● An Example of the Naïve Approach
− itemsets: {abc} {bcd} {abd} {cde}
− {abc} + {bcd} = {abcd}
− {bcd} + {abd} = {abcd}
− {abd} + {cde} = {abcde}
− ….

Candidates generation (cont.)

● Introduction of ordering
− Items in U can be sorted in lexicographic ordering
− Items in each itemset can be sorted in lexicographic ordering
− Itemsets can be ordered as strings

● The improved approach:
− Order the frequent k-itemsets
− Merge two itemsets if and only if the first k-1 items of them

are equal

Candidates generation (cont.)

● Example 1:
− k-itemsets: {abc} {abd} {acd} {bcd}

− (k+1)-itemsets: {abc} + {abd} = {abcd}

− No other pair shares a prefix of size k-1, no need to check other combinations

● Example 2:
− k-itemsets: {abc} {acd} {bcd}

− No (k+1) -candidates

− Did we miss {abcd}?
● No, due to the Downward Closure Property: every subset of a frequent itemset is also

frequent, and {abd} is not frequent

Note: We are writing {xyz} to
mean the set {x, y, z}

Improving computation of support

Naïve support counting

● Naïve counting:
− For each candidate Ii ∊ Ck+1

● For each transaction Tj in T
−Check whether Ii appears in Tj

● This is very slow if both |Ck+1| and |T| are large

Support counting with a data
structure

● A Better Approach
− Organize the candidate patterns in Ck+1 in a data

structure

● Use the data structure to accelerate counting
− Each transaction in Ti examined against the subset of

candidates in Ck+1 that might contain Ti

Support counting based on hashing

Naïve counting:
For each Ii ∊ Ck+1

 For all Tj ∊ T
 If Ii ⊆ Tj
 Add to sup(Ii)

Hashed counting:
For each Tj ∊ T
 For Ii ∊ hashbucket(Tj, Ck+1)
 If Ii ⊆ Tj
 Add to sup(Ii)

Which candidates are relevant?
Imagine 15 candidates
itemsets of length 3:

● {1 4 5}, {1 2 4}, {4 5 7},
{1 2 5}, {4 5 8}, {1 5 9},
{1 3 6}, {2 3 4}, {5 6 7},
{3 4 5}, {3 5 6}, {3 5 7},
{6 8 9}, {3 6 7}, {3 6 8}

Now, suppose we look
for this transaction:
 {1 2 3 5 6}

Here we depict only the candidates that
appear in the transaction (10 out of 15)

Hash tree for itemsets in Ck+1

● A tree with fixed degree r
● Each itemset in Ck+1 is stored in a leaf node
● All internal nodes use a hash function to map

items to one of the r branches (can be the same for all
internal nodes)

● All leaf nodes contain a lexicographically sorted
list of up to max_leaf_size itemsets

Example hash tree
r=3 max_leaf_size=3

Candidate itemsets
{1 4 5}, {1 2 4}, {4 5 7},
{1 2 5}, {4 5 8}, {1 5 9},
{1 3 6}, {2 3 4}, {5 6 7},
{3 4 5}, {3 5 6}, {3 5 7},
{6 8 9}, {3 6 7}, {3 6 8}

2 3 4
5 6 7

1 4 5
1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 8

1,4,7
2,5,8

3,6,9
Hash function

This example from: Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapter 5) – slides ch5

Important:
itemsets are sorted!

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap5-association_analysis.pdf

Example hash tree (cont.)

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash
Tree

Hash on
1, 4 or 7

Example hash tree (cont.)

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash
Tree

Hash on
2, 5 or 8

Example hash tree (cont.)

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash
Tree

Hash on
3, 6 or 9

Checking which candidates might be in a transaction

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1 2 3 5 6

1,4,7

2,5,8

3,6,9

Hash Functiontransaction

Checking which candidates might be in a transaction

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1 2 3 5 6

1 + 2 3 5 6 3 5 62 +

5 63 +
1,4,7

2,5,8

3,6,9

Hash Functiontransaction

Checking which candidates might be in a transaction

1,4,7

2,5,8

3,6,9

Hash Function

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Checking which candidates might be in a transaction

1,4,7

2,5,8

3,6,9

Hash Function

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

63 5 +
63 +

1 5 6

5 61 2 3 +

61 2 5 +

Checking which candidates might be in a transaction

1,4,7

2,5,8

3,6,9

Hash Function

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Compare transaction
against 11 out of 15

candidates

1 5 6

5 61 2 3 +

61 2 5 +

Exercise: Use the hash tree to determine which
candidates might be in this transaction

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

3 6 8 9

1,4,7

2,5,8

3,6,9

Hash Function
transaction

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

3 6 8 9

1,4,7

2,5,8

3,6,9

Hash Function
transaction

SOLUTION

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

3 6 8 9

6 8 93 +98 +
1,4,7

2,5,8

3,6,9

Hash Function transaction

8 96 +

8 93 6 +
93 8 +96 8 +

Compare transaction
against 8 out of 15

candidates

(= Relationship between prefixes)

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

3 6 8 9

6 8 93 +98 +
1,4,7

2,5,8

3,6,9

Hash Function
transaction

8 96 +

8 93 6 +
93 8 +96 8 +

Compare transaction
against 8 out of 15

candidates

Improved algorithm for frequent itemsets
● C1 ← singletons, lexicographically sorted

● F1 ← elements in C1 with support ≥ minsup, obtained by direct counting

● k ← 1

● While Fk is not empty
− Generate Ck+1 by merging elements in Fk sharing a prefix of size k-1
− Remove from Ck+1 elements that do not have all of their subsets in Fk

− Create hash tree for Ck+1

− Pass all transactions in T by the hash tree to compute support for elements of Ck+1

− Fk+1 ← elements in Ck+1 with support ≥ minsup, lexicographically sorted

● Return the union of F1, F2, …, Fk

Summary

Things to remember

● Lexicographic candidate generation
● Level pruning
● Hash-tree method

Exercises for this topic

● Data Mining, The Textbook (2015) by Charu Aggarwal
− Exercises 4.9 → 9-10

● Mining of Massive Datasets 2nd edition (2014) by
Leskovec et al.
− Exercises 6.2.7 → 6.2.5 and 6.2.6

● Introduction to Data Mining 2nd edition (2019) by Tan et
al.
− Exercises 5.10 → 9-12

Additional contents
(not included in exams)

Enumeration-tree algorithms:
Lexicographic tree

● There is a node in the tree for each frequent itemset

● The root of the tree contains the null itemset

● If I = {i1, i2, …, ik} then the parent of I in the tree is {i1, i2,
…, ik-1}

Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapters 5, 6) – slides ch5, slides ch6

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap5-association_analysis.pdf
https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap6_advanced_association_analysis.pdf

Example

Note that, unlike the
lattice, a parent can
only be extended
with an item that is
lexicographically
larger

Enumeration tree algorithm

Enumeration-tree-based
implementation of Apriori

● Apriori constructs the enumeration tree in a breadth-first
manner

● Apriori generates candidate (k+1)-itemsets by merging
two frequent k-itemsets of which the first k-1 items are
the same ⇒ extension in the enumeration-tree

