versita
upf Pompeu Fabra
reelona

Association Rules Mining
Reducing Running Time

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — https://chato.cl/teach
Instructor: Dr. Teodora Sandra Buda — https://tbuda.qithub.io/

https://chato.cl/teach
https://tbuda.github.io/

Sources

. Data Mining, The Textbook (2015) by Charu Aggarwal
(Chapters 4, 5) — slides by Lijun Zhang

. Mining of Massive Datasets 2" edition (2014) by
Leskovec et al. (Chapter 6) - slides

. Data Mining Concepts and Techniques, 3™ edition
(2011) by Han et al. (Chapter 6)

. Introduction to Data Mining 2" edition (2019) by Tan et
al. (Chapters 5, 6) — slides ch5, slides ch6

https://cs.nju.edu.cn/zlj/Course/DM_15_Lecture/Lecture_4.pdf
http://infolab.stanford.edu/~ullman/mmds/ch6.pdf
http://www.mmds.org/mmds/v2.1/ch06-assocrules.pptx
https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap5-association_analysis.pdf
https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap6_advanced_association_analysis.pdf

Speeding up candidate generation

Speeding-up candidate generation:
level-wise pruning trick

. LetF, be the set of frequent k-itemsets [we know they are
frequent]

. Let C ., be the set of (k+1)-candidates [we do not know their
frequency]

. 1€C, ., is frequent only if all the k-subsets of | are frequent

. Pruning
- Generate all the k-subsets of |
- If any one of them does not belong to F, then remove |

Candidates generation

A Nalve Approach
- Check all the possible combinations of frequent itemsets

. An Example of the Naive Approach
- itemsets: {abc} {bcd} {abd} {cde}

- {abc} + {bcd} = {abcd}

- {bcd} + {abd} = {abcd}

- {abd} + {cde} = {abcde}

Candidates generation (cont.)

Introduction of ordering

- Items in U can be sorted in lexicographic ordering

- Items in each itemset can be sorted in lexicographic ordering
- |temsets can be ordered as strings

. The improved approach:
- Order the frequent k-itemsets

- Merge two itemsets if and only if the first k-1 items of them
are equal

Candidates generation (cont.)

. Example 1: Note: We are writing {xyz} to
- k-itemsets: {abc} {abd} {acd} {bcd} mean the set {x, y, z}

- (k+1)-itemsets: {abc} + {abd} = {abcd}

- No other pair shares a prefix of size k-1, no need to check other combinations
. Example 2:

- k-itemsets: {abc} {acd} {bcd}

- No (k+1) -candidates

- Did we miss {abcd}?

No, due to the Downward Closure Property: every subset of a frequent itemset is also
frequent, and {abd} is not frequent

Improving computation of support

Naive support counting

e Naive counting:

- For each candidate . € C ,.

e For each transaction TJ. in T
— Check whether | appears in Tj

e Thisis very slow if both |C, .| and |T| are large

K+1

Support counting with a data
structure

e A Better Approach

- Organize the candidate patternsin C .. in a data
structure

e Use the data structure to accelerate counting

— Each transaction in T. examined against the subset of
candidates in C . that might contain T.

Support counting based on hashing

Naive counting: Hashed counting:
Foreachl €C . ForeachT €T
Forall T. €T For | € hashbucket(T C.)
=k [N=h

Add to sup(l.) Add to sup(l.)

Which candidates are relevant?

Transaction, t
123586

Imagine 15 candidates
itemsets of length 3:

. {145}, {124}, {45 7},
{125}, {458}, {15 9},
{136}, {234}, {567},
{345}, {356}, {357},
{6 8 9}, {36 7}, {36 8}

Now, suppose we look

for this transaction:
{1235 6}

Here we depict only the candidates that
appear in the transaction (10 out of 15)

Hash tree foritemsetsin C ..

. Atree with fixed degree r

. Each itemset in C,__. is stored in a leaf node

. All internal nodes use a hash function to map

items to one of the r branches (can be the same for all
internal nodes)

. All leaf nodes contain a lexicographically sorted
list of up to max_leaf size itemsets

Example hash tree
r=3 max_leaf size=3

Candidate itemsets

{1 4 5}, {1 2 4},
{1 2 5}, {4 5 8},
{1 3 6}, {2 3 4},
{3 4 5}, {35 6},
{6 8 9}, {3 6 7},

{4 57},
{1 5 9},
{5 6 7},
{3 57},
{3 6 8}

Hash function

2,5,8

234
/ 567
145 345 356 367

689
124

457 125 159

458 Important:

itemsets are sorted!

This example from: Introduction to Data Mining 2" edition (2019) by Tan et al. (Chapter 5) — slides ch5

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap5-association_analysis.pdf

Example hash tree (cont.)

Hash Function Candidate Hash

1,4,7 3,6,9
2,5,8
i 145
Hashon _
1. 4o0r7
| (124
L

Example hash tree (cont.)

Hash Function Candidate Hash

1,4,7 3,6,9
25,8
145
Hash on
2,50r8 . "
124

Example hash tree (cont.)

Candidate Hash

Hash Function

1,4,7 3,6,9

2,5,8

Hash on
3,60r9

145

124

457

125

458

Checking which candidates might be in a transaction

124

12356

'

transaction

457

125

159

458

689

Hash Function

1,.4,7 3,6,9
2,5,8

Checking which candidates might be in a transaction

12356

'

1+

2356

124
457

transaction Hash Function

1,.4,7 3,6,9

2,5,8

125

458

159

689

Checking which candidates might be in a transaction

12+

356

13+

56

15+

1+

2356

145

124

457

125

458

1 2 35 6 | transaction
2+|356
3+/56
-~
234
567
136
345 356 367
357 368
159 689

Hash Function

1,.4,7 3,6,9

2,5,8

Checking which candidates might be in a transaction

1+

12+]|356
13+(56
15+1(6]

145
125+|6

124

457

1 2 35 6 | transaction
2356 »+l356
l 3+|56
A/
234 35+
567
136
345 356 367
156 357 368
125 159 689
458 123+]156

Hash Function

1,.4,7 3,6,9

2,5,8

3+

Checking which candidates might be in a transaction

12+(356
13+(56
I5+|6
145
125+]6
124
457

1+

1 2 35 6 | transaction
2356 > 1356
l 3+|56
| “
234
567
136 j
345 356 367
£ 156 357 368
125|159 089
458 ¥ 123456

Hash Function

1,.4,7 3,6,9

2,5,8

Compare transaction
against 11 out of 15
candidates

Exercise: Use the hash tree to determine which
candidates might be Iin this transaction

Hash Function

3689 |transaction

\/

Hash Function

3689 |transaction

3,6,9

2,5,8

12411125 159 689
45711458

Hash Function

1,4,7

2,5,8

3,6,9

145

124

SOLUTION

3689

8 +

'

transaction

457

125

159

458

36+|89
38+|9

Compare transaction
against 8 out of 15
candidates

(=-» = Relationship between prefixes)

Hash Function - 3689 _Ira'msactmn
4
1,4,7 3,6,9 \\" .
2,5,8 \‘ .
36¢| 80
38+ |3
145
357 368 Compare transaction
12411125 | 159 689 against 8 out of 15

candidates

45711458

Improved algorithm for frequent itemsets

. C, < singletons, lexicographically sorted

. F,<elements in C, with support 2 minsup, obtained by direct counting
. k<1

. While F_ is not empty

- Generate C ,, by merging elements in F, sharing a prefix of size k-1

- Remove from C, ., elements that do not have all of their subsets in Fk

k+1

- Create hash tree for C, |,

- Pass all transactions in T by the hash tree to compute support for elements of C,__,

- F.,, < elementsin C, . with support 2 minsup, lexicographically sorted

. Return the unionof F., F,, ..., F_

Summary

Things to remember

. Lexicographic candidate generation

. Level pruning

. Hash-tree method

Exercises for this topic

. Data Mining, The Textbook (2015) by Charu Aggarwal

- Exercises 4.9 — 9-10
. Mining of Massive Datasets 2" edition (2014) by
Leskovec et al.

- Exercises 6.2.7 — 6.2.5 and 6.2.6
: Ir;troduction to Data Mining 2" edition (2019) by Tan et
al.

- Exercises 5.10 — 9-12

Additional contents
(not included in exams)

EX IRA

Enumeration-tree algorithms:
Lexicographic tree

There is a node in the tree for each frequent itemset
The root of the tree contains the null itemset

IfI={i,i, ...,i}thenthe parent of I in the tree is {i,, i,
ooy b}

Introduction to Data Mining 2" edition (2019) by Tan et al. (Chapters 5, 6) — slides ch5, slides ch6

https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap5-association_analysis.pdf
https://www-users.cs.umn.edu/~kumar001/dmbook/slides/chap6_advanced_association_analysis.pdf

Example <D

Note that, unlike the (2) (2] o @ © &

lattice, a parent can
only be extended

with an item that is G G G GD (o) Gd) () (@) @)

lexicographically
larger

CRACIRCRCIRCHRCIRCD
Cacdf

Enumeration tree algorithm

Algorithm GenericEnumerationTree(Transactions: T,
Minimum Support: minsup)
begin
Initialize enumeration tree £7 to single Null node;
while any node in £7 has not been examined do begin
Select one of more unexamined nodes P from £7 for examination;
Generate candidates extensions C(P) of each node P € P;
Determine frequent extensions F'(P) C C'(P) for each P € P with support counting;
Extend each node P € P in £T with its frequent extensions in F'(P);
end
return enumeration tree £7 ;
end

Enumeration-tree-based
iImplementation of Apriori

e Apriori constructs the enumeration tree in a breadth-first
manner

e Apriori generates candidate (k+1)-itemsets by merging
two frequent k-itemsets of which the first k-1 items are
the same = extension in the enumeration-tree

