

Association Rules Mining Reducing Running Time

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — <u>https://chato.cl/teach</u> Instructor: Dr. Teodora Sandra Buda — <u>https://tbuda.github.io/</u>

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapters 4, 5) – <u>slides by Lijun Zhang</u>
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (<u>Chapter 6</u>) - <u>slides</u>
- Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al. (Chapter 6)
- Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapters 5, 6) <u>slides ch5</u>, <u>slides ch6</u>

Speeding up candidate generation

Speeding-up candidate generation: level-wise pruning trick

- Let F_k be the set of frequent k-itemsets [we know they are frequent]
- Let C_{k+1} be the set of (k+1)-candidates [we do not know their frequency]
- . $I \in C_{k+1}$ is frequent only if all the k-subsets of I are frequent
- Pruning
 - Generate all the k-subsets of I
 - If any one of them does not belong to F_k, then remove I

Candidates generation

- A Naïve Approach
 - Check all the possible combinations of frequent itemsets
- . An Example of the Naïve Approach
 - itemsets: {abc} {bcd} {abd} {cde}
 - {abc} + {bcd} = {abcd}
 - {bcd} + {abd} = {abcd}
 - {abd} + {cde} = {abcde}

-

Candidates generation (cont.)

Introduction of ordering

- Items in U can be sorted in lexicographic ordering
- Items in each itemset can be sorted in lexicographic ordering
- Itemsets can be ordered as strings
- The improved approach:
 - Order the frequent k-itemsets
 - Merge two itemsets if and only if the first k-1 items of them are equal

Candidates generation (cont.)

• Example 1:

Note: We are writing {xyz} to mean the set {x, y, z}

- k-itemsets: {abc} {abd} {acd} {bcd}
- (k+1)-itemsets: {abc} + {abd} = {abcd}
- No other pair shares a prefix of size k-1, no need to check other combinations
- Example 2:
 - k-itemsets: {abc} {acd} {bcd}
 - No (k+1) -candidates
 - Did we miss {abcd}?
 - No, due to the Downward Closure Property: every subset of a frequent itemset is also frequent, and {abd} is not frequent

Improving computation of support

Naïve support counting

- Naïve counting:
 - For each candidate $I_i \in C_{k+1}$
 - For each transaction T_i in T

- Check whether I_i appears in T_i

• This is very slow if both $|C_{k+1}|$ and |T| are large

Support counting with a data structure

- A Better Approach
 - Organize the candidate patterns in C_{k+1} in a data structure
- Use the data structure to accelerate counting
 - Each transaction in T_i examined against the subset of candidates in C_{k+1} that *might* contain T_i

Support counting based on hashing

Naïve counting: For each $I_i \in C_{k+1}$ For all $T_j \in T$ If $I_i \subseteq T_j$ Add to $sup(I_i)$

Hashed counting: For each $T_j \in T$ For $I_i \in hashbucket(T_j, C_{k+1})$ If $I_i \subseteq T_j$ Add to $sup(I_i)$

Which candidates are relevant?

Imagine 15 candidates itemsets of length 3:

 $\{1 \ 2 \ 3 \ 5 \ 6\}$

Here we depict only the candidates that appear in the transaction (10 out of 15)

Hash tree for itemsets in C_{k+1}

- . A tree with fixed degree r
- . Each itemset in C_{k+1} is stored in a leaf node
- All internal nodes use a hash function to map items to one of the r branches (can be the same for all internal nodes)
- All leaf nodes contain a lexicographically sorted list of up to max_leaf_size itemsets

Example hash tree r=3 max_leaf_size=3

This example from: Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapter 5) – <u>slides ch5</u>

Example hash tree (cont.)

Example hash tree (cont.)

Example hash tree (cont.)

2,5,8

Compare transaction against 11 out of 15 candidates

SOLUTION

(- · ► = Relationship between prefixes)

Improved algorithm for frequent itemsets

- $C_1 \leftarrow$ singletons, lexicographically sorted
- $F_1 \leftarrow$ elements in C_1 with support \geq minsup, obtained by direct counting
- k ← 1
- While F_k is not empty
 - Generate C_{k+1} by merging elements in F_k sharing a prefix of size k-1
 - Remove from C_{k+1} elements that do not have all of their subsets in F_k
 - Create hash tree for C_{k+1}
 - Pass all transactions in T by the hash tree to compute support for elements of C_{k+1}
 - F_{k+1} ← elements in C_{k+1} with support ≥ minsup, lexicographically sorted
- Return the union of $F_1, F_2, ..., F_k$

Summary

Things to remember

- Lexicographic candidate generation
- Level pruning
- . Hash-tree method

Exercises for this topic

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises $4.9 \rightarrow 9-10$
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al.
 - Exercises $6.2.7 \rightarrow 6.2.5$ and 6.2.6
- Introduction to Data Mining 2nd edition (2019) by Tan et al.
 - Exercises $5.10 \rightarrow 9-12$

Additional contents (not included in exams)

Enumeration-tree algorithms: Lexicographic tree

- There is a node in the tree for each frequent itemset
- The root of the tree contains the null itemset
- If I = { i_1 , i_2 , ..., i_k } then the parent of I in the tree is { i_1 , i_2 , ..., i_{k-1} }

Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapters 5, 6) – <u>slides ch5</u>, <u>slides ch6</u>

Example

Note that, unlike the lattice, a parent can only be extended with an item that is lexicographically larger

Enumeration tree algorithm

Algorithm GenericEnumerationTree(Transactions: \mathcal{T} , Minimum Support: minsup)

begin

Initialize enumeration tree \mathcal{ET} to single Null node;

while any node in \mathcal{ET} has not been examined do begin

Select one of more unexamined nodes \mathcal{P} from \mathcal{ET} for examination;

Generate candidates extensions C(P) of each node $P \in \mathcal{P}$;

Determine frequent extensions $F(P) \subseteq C(P)$ for each $P \in \mathcal{P}$ with support counting; Extend each node $P \in \mathcal{P}$ in \mathcal{ET} with its frequent extensions in F(P);

\mathbf{end}

return enumeration tree \mathcal{ET} ;

end

Enumeration-tree-based implementation of Apriori

- Apriori constructs the enumeration tree in a breadth-first manner
- Apriori generates candidate (k+1)-itemsets by merging two frequent k-itemsets of which the first k-1 items are the same ⇒ extension in the enumeration-tree