Association Rules Mining Reducing Running Time

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo - https://chato.cl/teach Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapters 4, 5) - slides by Lijun Zhang
- Mining of Massive Datasets $2^{\text {nd }}$ edition (2014) by Leskovec et al. (Chapter 6) - slides
- Data Mining Concepts and Techniques, $3^{\text {rd }}$ edition (2011) by Han et al. (Chapter 6)
- Introduction to Data Mining $2^{\text {nd }}$ edition (2019) by Tan et al. (Chapters 5, 6) - slides ch5, slides ch6

Speeding up candidate generation

Speeding-up candidate generation: level-wise pruning trick

- Let F_{k} be the set of frequent k-itemsets [we know they are frequent]
- Let $\mathrm{C}_{\mathrm{k}+1}$ be the set of $(\mathrm{k}+1)$-candidates [we do not know their frequency]
- $I \in C_{k+1}$ is frequent only if all the k-subsets of I are frequent
- Pruning
- Generate all the k-subsets of I
- If any one of them does not belong to F_{k}, then remove I

Candidates generation

- A Naïve Approach
- Check all the possible combinations of frequent itemsets
- An Example of the Naïve Approach
- itemsets: $\{a b c\}\{b c d\}\{a b d\}\{c d e\}$
$-\{a b c\}+\{b c d\}=\{a b c d\}$
$-\{b c d\}+\{a b d\}=\{a b c d\}$
$-\{a b d\}+\{c d e\}=\{a b c d e\}$

Candidates generation (cont.)

- Introduction of ordering
- Items in U can be sorted in lexicographic ordering
- Items in each itemset can be sorted in lexicographic ordering
- Itemsets can be ordered as strings
- The improved approach:
- Order the frequent k-itemsets
- Merge two itemsets if and only if the first k-1 items of them are equal

Candidates generation (cont.)

- Example 1:
- k-itemsets: \{abc\} \{abd\} \{acd\} \{bcd\}
- $(k+1)$-itemsets: $\{a b c\}+\{a b d\}=\{a b c d\}$
- No other pair shares a prefix of size $k-1$, no need to check other combinations
- Example 2:
- k-itemsets: $\{a b c\}\{a c d\}\{b c d\}$
- No (k+1) -candidates
- Did we miss \{abcd\}?
- No, due to the Downward Closure Property: every subset of a frequent itemset is also frequent, and \{abd\} is not frequent

Improving computation of support

Naïve support counting

- Naïve counting:
- For each candidate $I_{i} \in C_{k+1}$
- For each transaction T_{j} in T
- Check whether I_{i} appears in T_{j}
- This is very slow if both $\left|C_{k+1}\right|$ and $|T|$ are large

Support counting with a data structure

- A Better Approach
- Organize the candidate patterns in $\mathrm{C}_{\mathrm{k}+1}$ in a data structure
- Use the data structure to accelerate counting
- Each transaction in T_{i} examined against the subset of candidates in $\mathrm{C}_{\mathrm{k}+1}$ that might contain T_{i}

Support counting based on hashing

Naïve counting:
For each $I_{i} \in C_{k+1}$
For all $T \in T$
If $I_{i} \subseteq T_{j}$
Add to $\sup \left(\mathrm{I}_{\mathrm{i}}\right)$

Hashed counting:
For each $T_{j} \in T$
For $I_{i} \in$ hashbucket $\left(T_{j}, C_{k+1}\right)$
If $\mathrm{I}_{\mathrm{i}} \subseteq \mathrm{T}_{\mathrm{i}}$
Add to $\sup \left(\mathrm{I}_{\mathrm{i}}\right)$

Which candidates are relevant?

Imagine 15 candidates itemsets of length 3 :

- $\{145\},\{124\},\{457\}$, $\{125\},\{458\},\{159\}$, $\{136\},\{234\},\{567\}$, $\{345\},\{356\},\{357\}$, $\{689\},\{367\},\{368\}$
Now, suppose we look for this transaction:
$\left\{\begin{array}{lllll}1 & 2 & 3 & 6\end{array}\right\}$

Level 3

Here we depict only the candidates that appear in the transaction (10 out of 15)

Hash tree for itemsets in $\mathrm{C}_{\mathrm{k}+1}$

- A tree with fixed degree r
- Each itemset in $\mathrm{C}_{\mathrm{k}+1}$ is stored in a leaf node
- All internal nodes use a hash function to map items to one of the r branches (can be the same for all internal nodes)
- All leaf nodes contain a lexicographically sorted list of up to max_leaf_size itemsets

Example hash tree r=3 max_leaf_size=3

Candidate itemsets

$45\}$	$\{124\},\{457\}$,
$125\}$	\{4 5 8\}, $\{159\}$,
3 6\}	\{2 34$\},\{567\}$,
3455	\{3 5 6\}, $\{357\}$,
(6 8 9\},	\{3 67$\},\{368\}$

Hash function

Example hash tree (cont.)

Example hash tree (cont.)

Example hash tree (cont.)

Checking which candidates might be in a transaction

Checking which candidates might be in a transaction

Checking which candidates might be in a transaction

Checking which candidates might be in a transaction

Checking which candidates might be in a transaction

Exercise: Use the hash tree to determine which candidates might be in this transaction
Hash Function

SOLUTION

(-- = Relationship between prefixes)

Improved algorithm for frequent itemsets

- $\mathrm{C}_{1} \leftarrow$ singletons, lexicographically sorted
- $\mathrm{F}_{1} \leftarrow$ elements in C_{1} with support \geq minsup, obtained by direct counting
- $\mathrm{k} \leftarrow 1$
- While F_{k} is not empty
- Generate C_{k+1} by merging elements in F_{k} sharing a prefix of size $k-1$
- Remove from C_{k+1} elements that do not have all of their subsets in F_{k}
- Create hash tree for C_{k+1}
- Pass all transactions in T by the hash tree to compute support for elements of C_{k+1}
- $F_{k+1} \leftarrow$ elements in C_{k+1} with support \geq minsup, lexicographically sorted
- Return the union of $F_{1}, F_{2}, \ldots, F_{k}$

Summary

Things to remember

- Lexicographic candidate generation
- Level pruning
. Hash-tree method

Exercises for this topic

- Data Mining, The Textbook (2015) by Charu Aggarwal
- Exercises $4.9 \rightarrow 9-10$
- Mining of Massive Datasets $2^{\text {nd }}$ edition (2014) by Leskovec et al.
- Exercises 6.2.7 \rightarrow 6.2.5 and 6.2.6
- Introduction to Data Mining $2^{\text {nd }}$ edition (2019) by Tan et al.
- Exercises $5.10 \rightarrow 9-12$

Additional contents (not included in exams)

Enumeration-tree algorithms: Lexicographic tree

- There is a node in the tree for each frequent itemset
- The root of the tree contains the null itemset
- If $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ then the parent of I in the tree is $\left\{i_{1}, i_{2}\right.$, $\left.\ldots, i_{k-1}\right\}$

Example

Note that, unlike the lattice, a parent can only be extended with an item that is lexicographically larger

Enumeration tree algorithm

```
Algorithm GenericEnumerationTree(Transactions: \mathcal{T}
    Minimum Support: minsup)
begin
    Initialize enumeration tree }\mathcal{ET}\mathrm{ to single Null node;
    while any node in }\mathcal{ET}\mathrm{ has not been examined do begin
    Select one of more unexamined nodes }\mathcal{P}\mathrm{ from }\mathcal{ET}\mathrm{ for examination;
    Generate candidates extensions C(P) of each node P\in\mathcal{P};
    Determine frequent extensions F(P)\subseteqC(P) for each P\in\mathcal{P}\mathrm{ with support counting;}
    Extend each node P\in\mathcal{P}\mathrm{ in }\mathcal{ET}\mathrm{ with its frequent extensions in F(P);}
    end
    return enumeration tree }\mathcal{ET}\mathrm{ ;
end
```


Enumeration-tree-based implementation of Apriori

- Apriori constructs the enumeration tree in a breadth-first manner
- Apriori generates candidate ($\mathrm{k}+1$)-itemsets by merging two frequent k-itemsets of which the first $k-1$ items are the same \Rightarrow extension in the enumeration-tree

