Association Rules Mining

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo - https://chato.cl/teach Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapters 4, 5) - slides by Lijun Zhang
- Mining of Massive Datasets $2^{\text {nd }}$ edition (2014) by Leskovec et al. (Chapter 6) - slides
- Data Mining Concepts and Techniques, $3^{\text {rd }}$ edition (2011) by Han et al. (Chapter 6)
- Introduction to Data Mining $2^{\text {nd }}$ edition (2019) by Tan et al. (Chapters 5, 6) - slides ch5, slides ch6

Association rule

- Let X, Y be two itemsets; the rule $X \Rightarrow Y$ is an association rule of minimum support minsup and minimum confidence minconf if:

$$
\begin{gathered}
\sup (X \Rightarrow Y) \geq \text { minsup } \\
\text { and } \\
\operatorname{conf}(X \Rightarrow Y) \geq \text { minconf }
\end{gathered}
$$

Algorithmic scheme for association rules mining

- In the first phase, all the frequent itemsets are generated at the minimum support of minsup
- The most difficult (computationally expensive) step
- In the second phase, the association rules are generated from the frequent itemsets at the minimum confidence level of minconf
- Relatively straightforward

A straightforward implementation of the second phase

- For each frequent itemset I (i.e., sup(I) \geq minsup)
- For each possible partition $X, Y=I-X$
- Check if conf $(X \Rightarrow Y) \geq$ minconf
- Use the confidence monotonicity property (next slide) to reduce search space

Confidence monotonicity property

Let X_{S}, X_{L}, I be itemsets; assume $X_{S} \subset X_{L} \subset I$
Then:

$$
\operatorname{conf}\left(X_{L} \Rightarrow I-X_{L}\right) \geq \operatorname{conf}\left(X_{S} \Rightarrow I-X_{S}\right)
$$

Exercise: prove conf. monotonicity

$X_{S} \subset X_{L} \subset I \Rightarrow \operatorname{conf}\left(X_{L} \Rightarrow I-X_{L}\right) \geq \operatorname{conf}\left(X_{S} \Rightarrow I-X_{S}\right)$
Tip: start from what you want to prove:

1. Use the definition of confidence on this
2. Try to arrive to $\operatorname{conf}(X \Rightarrow Y)=\frac{\sup (X \cup Y)}{\sup (X)}$
which we know is true because $\sup \left(X_{L}\right) \leq \sup \left(X_{S}\right)$

$$
X_{S} \subset X_{L}
$$

Proof:

confidence monotonicity property

Let X_{S}, X_{L}, I be itemsets and $X_{S} \subset X_{L} \subset I$

$$
\begin{aligned}
\sup \left(X_{L}\right) & \leq \sup \left(X_{S}\right) \\
\frac{\sup (I)}{\sup \left(X_{L}\right)} & \geq \frac{\sup (I)}{\sup \left(X_{S}\right)} \\
\frac{\sup \left(X_{L} \cup I-X_{L}\right)}{\sup \left(X_{L}\right)} & \geq \frac{\sup \left(X_{S} \cup I-X_{S}\right)}{\sup \left(X_{S}\right)} \\
\operatorname{conf}\left(X_{L} \Rightarrow I-X_{L}\right) & \geq \operatorname{conf}\left(X_{S} \Rightarrow I-X_{S}\right)
\end{aligned}
$$

Brute-force itemset mining algorithms

Naïve approach

- Generate all candidate itemsets ($2^{\mid \mathrm{UV}}$ of them)
- Not practical, U=1000 \Rightarrow more than 10^{300} itemsets
- Calculate $\sup (I)$ for every itemset
- Key observation
- If no k-itemsets are frequent, then no ($k+1$)-itemsets are frequent

Improved approach

- Start with $\mathrm{k}=1$
- Generate all k-itemsets
- Determine $\sup (\mathrm{I})$
- If no k-itemset has $\sup (\mathrm{I}) \geq$ minsup, stop
- Otherwise, $k \leftarrow k+1$ and repeat

Improved approach is a significant improvement

- Let / be the final value of k

$$
\sum_{i=1}^{l}\binom{|U|}{i} \ll 2^{|U|}
$$

- For $|U|=1000, I=10$, this is $\simeq 10^{23}$

Further improvements to brute-force method

1. Reducing the size of the explored search space (lattice) by pruning candidate itemsets (lattice nodes) using tricks, such as the downward closure property
2. Counting the support of each candidate more efficiently by pruning transactions that are known to be irrelevant for counting a candidate itemset
3. Using compact data structures to represent either candidates or transaction databases that support efficient counting

The Apriori Algorithm

Apriori algorithm principle

- Downward closure property: every subset of a frequent itemset is also frequent
- Conversely, if an itemset has a subset that is not frequent, the itemset cannot be frequent
. What are subsets in the lattice?

Example

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items

| Item | \& $:$ Count | |
| :--- | :--- | :--- | :--- |
| Bread | 4 | |
| Coke | 2 | X |
| Milk | 4 | |
| Beer | 4 | |
| Diaper | 1 | X |
| Eggs | | |

Example

TID	Items	Items		
1	Bread, Milk	Item	Count	
2	Beer, B read, Diaper, Eggs	Bread	4	
3	Beer, Coke, Diaper, Milk	Bread	4	
4	Beer, B read, Diaper, Milk	Goke	z	X
5	Bread, Coke, Diaper, Milk	Milk	4	
		Beer	3	
		Diaper	4	
		Eggs	4	x

Example (cont.)

Items

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Introduction to Data Mining $2^{\text {nd }}$ edition (2019) by Tan et al. (Chapters 5, 6) - slides ch5, slides ch6

Example (cont.)

Items

Item	Count				
Bread	4	X	Pairs 17_i+n		
Goke	z		Item	Count	
Milk	4		\{Bread, Milk\}	3	
Beer	3		\{Beer, Bread\}	z	X
Diaper	4		\{Bread, Diaper\}	3	
Eggs	4	X	\{Beer, Millt \}	z	X
			\{Diaper, Milk\}	3	
	$\text { Minimum Supr }{ }_{3}^{\{B e e r, ~ D i a p e r\}}$			3	

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Introduction to Data Mining $2^{\text {nd }}$ edition (2019) by Tan et al. (Chapters 5, 6) - slides ch5, slides ch6

Example (cont.)

Items

Example (cont.)

Items

Introduction to Data Mining $2^{\text {nd }}$ edition (2019) by Tan et al. (Chapters 5, 6) - slides ch5, slides ch6

Pseudocode of Apriori

```
Algorithm Apriori(Transactions: \(\mathcal{T}\), Minimum Support: minsup)
begin
    \(k=1\);
    \(\mathcal{F}_{1}=\{\) All Frequent 1-itemsets \(\} ;\)
    while \(\mathcal{F}_{k}\) is not empty do begin
        Generate \(\mathcal{C}_{k+1}\) by joining itemset-pairs in \(\mathcal{F}_{k}\);
        Prune itemsets from \(\mathcal{C}_{k+1}\) that violate downward closure;
        Determine \(\mathcal{F}_{k+1}\) by support counting on \(\left(\mathcal{C}_{k+1}, \mathcal{T}\right)\) and retaining
            itemsets from \(\mathcal{C}_{k+1}\) with support at least minsup;
        \(k=k+1 ;\)
    end;
    \(\operatorname{return}\left(\cup_{i=1}^{k} \mathcal{F}_{i}\right) ;\)
end
(1) Generation
(2) Pruning
(3) Support counting
itemsets from \(\mathcal{C}_{k+1}\) with support at least minsup; \(k=k+1 ;\)
end;
return \(\left(\cup_{i=1}^{k} \mathcal{F}_{i}\right)\);
end
```


Exercise: Apriori

Use the Apriori algorithm to obtain all rules of the form $\{a, b\} \rightarrow\{c\}$ having support ≥ 2 and confidence $\geq 50 \%$

Note: to generate only rules of the

TID	items
T1	$I 1, I 2, I 5$
T2	$I 2, I 4$
T3	$I 2, I 3$
T4	$I 1, I 2, I 4$
T5	$I 1, I 3$
T6	$I 2, I 3$
T7	$I 1, I 3$
T8	$I 1, I 2, I 3, I 5$
T9	$I 1, I 2, I 3$

Spreadsheet link:
https://upfbarcelona.padlet.org/sandrabuda1/theory-exercises-tdmvfhddcnvfj5b8

\section*{Answer
 | Itemset | sup_count |
| :--- | ---: |
| 11 | 6 |
| 12 | 7 |
| 13 | 6 |
| 14 | 2 |
| 15 | 2 |
 | Itemset | sup_count | 4 |
| :--- | ---: | ---: |
| 11,12 | 4 | |
| 11,13 | 2 | |
| 11,15 | 4 | |
| 12,13 | 2 | |
| 12,14 | 2 | |
| 12,15 | 2 | |
| 12,15 | | |}

Example rules for itemset $\{11, \mathrm{I} 2,13\}$

$[11, I 2] \Rightarrow[13] / /$ confidence $=\sup (11, I 2, I 3) / \sup \left(11^{\wedge} \mid 2\right)=2 / 4^{*} 100=50 \%$
$[I 1, I 3] \Rightarrow[12] / /$ confidence $=\sup (11, I 2, I 3) / \sup \left(11^{\wedge} \mid 3\right)=2 / 4^{*} 100=50 \%$
$[12,13] \Rightarrow[11] / /$ confidence $=\sup (11, I 2,13) / \sup \left(12^{\wedge} \mid 3\right)=2 / 4^{*} 100=50 \%$
$[11] \Rightarrow[12,13] / /$ confidence $=\sup (11, I 2, I 3) /$ sup $(11)=2 / 6 * 100=33 \%$
$[I 2] \Rightarrow[I 1, I 3] / /$ confidence $=\sup (11, I 2, I 3) / \sup (I 2)=2 / 7^{*} 100=28 \%$
$[13] \Rightarrow[I 1, I 2] / /$ confidence $=\sup (I 1, I 2, I 3) / \sup (I 3)=2 / 6 * 100=33 \%$
Itemset $\{1,|2| 5$,$\} is done in an analogous manner.$

Summary

Things to remember

- Support and confidence on a rule
- Downward closure property
- every subset of a frequent itemset is also frequent
- hence, if an itemset X has a subset that is not frequent, X cannot be frequent
- Apriori algorithm

Exercises for TT13-TT14

- Data Mining, The Textbook (2015) by Charu Aggarwal
- Exercises $4.9 \rightarrow 9-10$ [but note the provided solution to these might have a mistake]
- Mining of Massive Datasets $2^{\text {nd }}$ edition (2014) by Leskovec et al.
- Exercises 6.2.7 \rightarrow 6.2.5 and 6.2.6
- Introduction to Data Mining $2^{\text {nd }}$ edition (2019) by Tan et al.
- Exercises $5.10 \rightarrow 9-12$

