

Association Rules Mining

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — <u>https://chato.cl/teach</u> Instructor: Dr. Teodora Sandra Buda — <u>https://tbuda.github.io/</u>

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapters 4, 5) – <u>slides by Lijun Zhang</u>
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (<u>Chapter 6</u>) - <u>slides</u>
- Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al. (Chapter 6)
- Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapters 5, 6) <u>slides ch5</u>, <u>slides ch6</u>

Association rule

 Let X, Y be two itemsets; the rule X⇒Y is an association rule of minimum support minsup and minimum confidence minconf if:

> $sup(X \Rightarrow Y) \ge minsup$ and $conf(X \Rightarrow Y) \ge minconf$

Algorithmic scheme for association rules mining

- In the first phase, all the frequent itemsets are generated at the minimum support of minsup
 - The most difficult (computationally expensive) step
- In the second phase, the association rules are generated from the frequent itemsets at the minimum confidence level of minconf
 - Relatively straightforward

A straightforward implementation of the second phase

- For each frequent itemset I (i.e., sup(I) ≥ minsup)
 - For each possible partition X, Y = I X
 - Check if $conf(X \Rightarrow Y) \ge minconf$

• Use the **confidence monotonicity property** (next slide) to reduce search space

Confidence monotonicity property

Let X_S, X_L, I be itemsets; assume $X_S \subset X_L \subset I$

Then:

 $\operatorname{conf}(X_L \Rightarrow I - X_L) \ge \operatorname{conf}(X_S \Rightarrow I - X_S)$

Exercise: prove conf. monotonicity

 $X_S \subset X_L \subset I \Rightarrow \operatorname{conf}(X_L \Rightarrow I - X_L) \ge \operatorname{conf}(X_S \Rightarrow I - X_S)$

Tip: start from what you want to prove: 1. Use the definition of confidence on this

2. Try to arrive to
$$\operatorname{conf}(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X)}$$

which we know is true because $\sup(X_L) \leq \sup(X_S)$

$$X_S \subset X_L$$

Proof:

confidence monotonicity property

Let X_S, X_L, I be itemsets and $X_S \subset X_L \subset I$

$$\begin{aligned} \sup(X_L) &\leq \sup(X_S) \\ \frac{\sup(I)}{\sup(X_L)} &\geq \frac{\sup(I)}{\sup(X_S)} \\ \frac{\sup(X_L \cup I - X_L)}{\sup(X_L)} &\geq \frac{\sup(X_S \cup I - X_S)}{\sup(X_S)} \\ \operatorname{conf}(X_L \Rightarrow I - X_L) &\geq \operatorname{conf}(X_S \Rightarrow I - X_S) \end{aligned}$$

Brute-force itemset mining algorithms

Naïve approach

- Generate all candidate itemsets (2^{|U|} of them)
 - Not practical, U=1000 \Rightarrow more than 10³⁰⁰ itemsets
- Calculate *sup(l)* for every itemset
- Key observation
 - If no k-itemsets are frequent, then no (k+1)-itemsets are frequent

Improved approach

- Start with k=1
- Generate all k-itemsets
- Determine sup(I)
- If no k-itemset has $sup(I) \ge minsup$, stop
- Otherwise, $k \leftarrow k+1$ and repeat

Improved approach is a significant improvement

• Let *I* be the final value of *k*

• For |U| = 1000, I=10, this is $\approx 10^{23}$

Further improvements to brute-force method

- Reducing the size of the explored search space (lattice) by pruning candidate itemsets (lattice nodes) using tricks, such as the downward closure property
- 2. Counting the support of each candidate more efficiently by pruning transactions that are known to be irrelevant for counting a candidate itemset
- 3. Using compact data structures to represent either candidates or transaction databases that support efficient counting

The Apriori Algorithm

Apriori algorithm principle

- Downward closure
 property: every subset of
 a frequent itemset is also
 frequent
- Conversely, if an itemset has a subset that is not frequent, the itemset cannot be frequent
- . What are subsets in the lattice?

Example

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items		
Item	Count	
Bread	4	
Coke	2	Х
Milk	4	
Beer	3	
Diaper	4	
Eggs	1	Х

Example

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items	`	
Item	Count	
Bread	4	
Coke	2	Х
Milk	4	
Beer	3	
Diaper	4	
Eggs	4	Х

Example (cont.)

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapters 5, 6) – <u>slides ch5</u>, <u>slides ch6</u>

Example (cont.)

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Example (cont.)

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Triplets			
	Item	Count	
	{Bread, Diaper, Milk}	2	Х
	{Beer, Bread, Diaper}	2	Х
	{Bread, Diaper, Milk}	2	Х
	{Beer, Bread, Milk}	1	Х

Pseudocode of Apriori

Algorithm Apriori(Transactions: \mathcal{T} , Minimum Support: minsup) **begin**

k = 1;

 $\mathcal{F}_1 = \{ \text{ All Frequent 1-itemsets } \};$

while \mathcal{F}_k is not empty do begin

Generate C_{k+1} by joining itemset-pairs in \mathcal{F}_k ; (1) Prune itemsets from C_{k+1} that violate downward closure; (2)

Determine \mathcal{F}_{k+1} by support counting on $(\mathcal{C}_{k+1}, \mathcal{T})$ and retaining (3) sitemsets from \mathcal{C}_{k+1} with support at least *minsup*;

```
(1) Generation
```

```
(2) Pruning
```

```
(3) Support counting
```

k = k + 1;

end;

```
\mathbf{return}(\cup_{i=1}^k \mathcal{F}_i);end
```

Exercise: Apriori

Use the Apriori algorithm to obtain all rules of the form $\{a,b\} \rightarrow \{c\}$ having support ≥ 2 and confidence $\geq 50\%$

Note: to generate only rules of the form $\{a,b\} \rightarrow \{c\}$, use only the itemsets of size 3

Spreadsheet link:

https://upfbarcelona.padlet.org/sandrabuda1/theory-exercises-tdmvfhddcnvfj5b8

11, 12, 15
12.14
12,14
12,13
11,12,14
11,13
12,13
11,13
11,12,13,15
11,12,13

Answer

TID	items
T1	11, 12 , 15
T2	12,14
T3	12,13
T4	11,12,14
T5	11,13
T 6	12,13
T7	11,13
T8	11,12,13,15
Т9	11,12,13

Itemset	sup_count
11	6
12	7
13	6
14	2
15	2

Itemset	sup_count
11,12	4
11,13	4
11,15	2
12,13	4
12,14	2
12,15	2
12.15	2

Example rules for itemset {I1, I2, I3}

 $[11,12] \Rightarrow [13] //confidence = sup(11,12,13)/sup(11^{12}) = 2/4*100=50\%$ $[11,13] \Rightarrow [12] //confidence = sup(11,12,13)/sup(11^{13}) = 2/4*100=50\%$ $[12,13] \Rightarrow [11] //confidence = sup(11,12,13)/sup(12^{13}) = 2/4*100=50\%$ $[11] \Rightarrow [12,13] //confidence = sup(11,12,13)/sup(11) = 2/6*100=33\%$ $[12] \Rightarrow [11,13] //confidence = sup(11,12,13)/sup(12) = 2/7*100=28\%$ $[13] \Rightarrow [11,12] //confidence = sup(11,12,13)/sup(13) = 2/6*100=33\%$ Itemset {I1,I2,I5} is done in an analogous manner.

Summary

Things to remember

- Support and confidence on a rule
- **Downward closure** property
 - every subset of a frequent itemset is also frequent
 - hence, if an itemset X has a subset that is not frequent, X cannot be frequent
- Apriori algorithm

Exercises for TT13-TT14

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises $4.9 \rightarrow 9-10$ [but note the provided solution to these might have a mistake]
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al.
 - Exercises $6.2.7 \rightarrow 6.2.5$ and 6.2.6
- Introduction to Data Mining 2nd edition (2019) by Tan et al.
 - Exercises $5.10 \rightarrow 9-12$