

Association Rules

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — https://chato.cl/teach

Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapters 4, 5) – <u>slides by Lijun Zhang</u>
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (<u>Chapter 6</u>) - <u>slides</u>
- Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al. (Chapter 6)
- Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapters 5, 6) – <u>slides ch5</u>, <u>slides ch6</u>

What is a rule

- A rule is of the form X⇒Y
 - X and Y are itemsets
- X is the antecedent, Y is the consequent
- The confidence of the rule is:

$$conf(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X)}$$

Confidence of a rule

• The confidence of the rule $X \Rightarrow Y$ is:

$$conf(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X)}$$

 This is the conditional probability of X U Y occurring in a transaction, given that X occurs in the transaction

Confidence of a rule (cont.)

```
tid Set of items

1    Bread, Jam, Juice

2    Tofu, Juice, Tomatoes

3    Bread, Strawberries, Tofu, Juice

4    Tofu, Juice, Tomatoes

5    Strawberries, Juice, Tomatoes
```

```
conf(\{tofu, juice\} \Rightarrow \{tomatoes\}) = ?
```

Confidence of a rule (cont.)

```
tid Set of items

1    Bread, Jam, Juice

2    Tofu, Juice, Tomatoes

3    Bread, Strawberries, Tofu, Juice

4    Tofu, Juice, Tomatoes

5    Strawberries, Juice, Tomatoes
```

$$conf(\{tofu, juice\} \Rightarrow \{tomatoes\}) = \frac{\sup(\{tofu, juice, tomatoes\})}{\sup(\{tofu, juice\})}$$

X and Y are sets of items

$$\operatorname{conf}(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X)}$$

- The "union" in the above definition is confusing for some people, because conditional probability definitions use "intersection"
- Remember that that the set of transactions containing X U Y is the set of transactions containing X intersected with the set of transactions containing Y
- The set of transactions containing "X \cap Y" is **irrelevant** for the purposes of computing confidence, e.g., **in the previous exercise**, **{tofu, juice}** \cap **{tomato}** is an empty set

Lift of a rule

• The lift of the rule $X \Rightarrow Y$ is:

$$\operatorname{lift}(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X) \sup(Y)}$$

 This is the ratio between the observed support and the expected support if X and Y were independent

Exercise

$$\operatorname{conf}(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X)}$$

$$\operatorname{lift}(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X) \sup(Y)}$$

Rule	$\frac{\textbf{Support}}{\sup(X \cup Y)}$	Confidence	Lift
$A \Rightarrow D$			
$C \Rightarrow A$			
$A \Rightarrow C$	100		
$B \& C \Rightarrow D$			

Answers

$$\operatorname{conf}(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X)}$$

$$\operatorname{lift}(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X) \sup(Y)}$$

Rule	Support	Confidence	Lift
$A \Rightarrow D$	2/5	2/3	10/9
$C \Rightarrow A$	2/5	2/4	5/6
$A \Rightarrow C$	2/5	2/3	5/6
$B \& C \Rightarrow D$	1/5	1/3	5/9

Association rule (minsup, minconf)

 Let X, Y be two itemsets; the rule X⇒Y is an association rule of minimum support minsup and minimum confidence minconf if:

```
\sup(X\Rightarrow Y) \ge \min\sup and \operatorname{conf}(X\Rightarrow Y) \ge \min \operatorname{conf}
```

Summary

Things to remember

- Association rule of minsup and minconf
- The concepts of confidence and lift

Exercises for TT11-TT12

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises $4.9 \rightarrow 1-3, 5, 7-8$
 - Exercises $5.7 \rightarrow 1-5$
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al.
 - Exercises $6.1.5 \rightarrow 6.1.1-6.1.7$
- Introduction to Data Mining 2nd edition (2019) by Tan et al.
 - Exercises $5.10 \rightarrow 2-7$