

Itemsets

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — <u>https://chato.cl/teach</u> Instructor: Dr. Teodora Sandra Buda — <u>https://tbuda.github.io/</u>

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapters 4, 5) – <u>slides by Lijun Zhang</u>
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (<u>Chapter 6</u>) - <u>slides</u>
- Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al. (Chapter 6)
- Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapters 5, 6) <u>slides ch5</u>, <u>slides ch6</u>

Market Basket Analysis

- Understand customers
 - Purchasing habits, sensitivity to price, promotions
- Understand products
 - Co-purchases, fast/slow movers
- Take action: promotions, store layout, ...

Transactions contain items, which can be grouped into itemsets

- Transactions
 - Sets of items bought by customers
- . The Goal
 - Determine associations between groups of items bought by customers
- . Quantification of the Level of Association
 - Frequencies of sets of items
- . The Discovered Sets of Items
 - Large itemsets, frequent itemsets, or frequent patterns

"Transaction" is a general concept

Items	Transactions
Groceries	Grocery cart
University courses	Transcript of courses taken
Guests	Party
Actors	Movies
Symptoms	Patient
Streamed songs	Streaming subscriber
Words	Document
Liked photos	Instagram account

https://web.stanford.edu/class/cs102/lecturenotes/DataMining.pdf

Applications

- Supermarket Data
 - Target marketing, shelf placement
- Text Mining
 - Identifying co-occurring terms
- Generalization to Dependency-oriented Data Types
 - Web log analysis, software bug detection
- Other Major Data Mining Problems
 - Clustering, classification, and outlier analysis

Association rules

- Generated from frequent itemsets
- Formulation $X \Rightarrow Y$
 - {Soy latte} \Rightarrow {Brown Sugar}
 - {Kale, Quinoa} \Rightarrow {Almond milk}
- Applications
 - Promotion
 - Shelf placement

• Conditional
$$\operatorname{Prok}_P(Y|X) = \frac{P(X \cap Y)}{P(X)}$$

Association rule mining

- *U* is a set of *d* items
- *T* is a set of n transactions $T_1, T_2, ..., T_n$ with $T_i \subseteq U$
- . Itemset: a set of items
- k-itemset: a set of k items
 - How many different k-itemsets exist? 2^k

Binary representation of a transaction

tid	Set of items	Binary representation
1	Bread, Jam, Juice	110010
2	Tofu, Juice, Tomatoes	000111
3	Bread, Strawberries, Tofu, Juice	101110
4	Tofu, Juice, Tomatoes	000111
5	Strawberries, Juice, Tomatoes	001011

Support of an Itemset

Definitions

- Support of itemset *I*, written *sup(I)*:
 - the fraction of transactions in the database $T = \{T_1 \dots T_n\}$ that contain *I* as a subset.
- Frequent itemset mining with support minsup:
 - Given a set of transactions $T = \{T_1, \dots, T_n\},\$
 - where $T_i \subseteq U$, find all itemsets I_j such that $sup(I_j) \ge minsup^{-1}$

Example

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries, Juice, Tomatoes

- $sup(\{Bread, Juice\}) = 2/5 = 0.4$
- sup({Strawberries, Tomatoes}) = 1/5 = 0.2
- If minsup=0.3, {Bread, Juice} is a frequent itemset

Exercise: compute support

TID	Items				
100	1	3	4		
200	2	3	5		
300	1	2	3	5	
400	2	5			

- Write the support of every 2-itemset and 3-itemset occurring in this database
- Indicate which are frequent itemsets if minsup = 1/2

Spreadsheet link: https://upfbarcelona.padlet.org/sandrabuda1/theory-exercises-tdmvfhddcnvfj5b8

Note: in this slide "support" is an absolute value (number of occurrences) while in this course in general "support" will be a **fraction or probability**. In this case, divide by 4 (number of transactions) to obtain a fraction or probability.

C1

C2

TID	Items		Itemset Support			Itemset	Support	
100	134		{1}	2	1	{1 3}*	2	
200	235	\rightarrow	{2}	3		{1 4}	1	
300	1235		{3}	3		{3 4}	1	
400	25		{5}	3]	{2 3}*	2	
		-		8		{2 5}*	3	
	Itemset	St	ipport			{3 5}*	2	
	{1 3 4}		1			{1 2}	1	
	{2 3 5}*	2		C3		{15}	1	
	1					~		

Source: https://www.saedsayad.com/association rules.htm

Properties

• The smaller minsup is, the larger the number of frequent itemsets

• Support monotonicity property: if $J \subseteq I$, $sup(J) \ge sup(I)$ WHY?

Properties

- The smaller minsup is, the larger the number of frequent itemsets
- Support monotonicity property: if $J \subseteq I$, $sup(J) \ge sup(I)$
- Fundamental observation for the proof:
 - if I is contained in a transaction, J is contained in the same transaction!

Properties

- Support monotonicity property: if $J \subseteq I$, $sup(J) \ge sup(I)$
- Confusingly, some authors refer to this as the support anti-monotonicity property
- Downward closure property
 - Every subset of a *frequent* itemset is also *frequent*

Closed and Maximal Itemsets

Closed itemset

An itemset is **closed** if all itemsets containing it are **strictly less frequent**

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries, Juice, Tomatoes

Find a closed itemset in this set of transactions

Closed itemset

An itemset is **closed** if all itemsets containing it are **strictly less frequent**

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries, Juice, Tomatoes

- sup({Bread, Juice}) = 2
 - sup({Bread, Juice, Jam}) = 1
 - sup({Bread, Juice, Strawberries})
 = 1
 - sup({Bread, Juice, Tofu}) = 1

{Bread, Juice} is a closed itemset

Maximal itemset

An itemset is **maximal** if: it is closed and it is frequent (frequent means: support ≥ minsup)

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries, Juice, Tomatoes

• Exercise

- Find three maximal frequent itemsets at minsup=0.4
- Tip: first find all frequent itemsets at minsup=0.4

Maximal itemset

An itemset is **maximal** if: it is closed and it is frequent (frequent means: support ≥ minsup)

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries, Juice, Tomatoes

• Example maximal itemsets at minsup=0.4

- {Bread, Juice}, {Strawberries, Juice}, {Tofu, Juice, Tomatoes}, ...
- Frequent patterns at minsup=0.4

Maximal itemset

An itemset is **maximal** if: it is closed and it has support ≥ minsup

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries, Juice, Tomatoes

Example maximal itemsets:

{Bread, Juice}, {Strawberries, Juice}, {Tofu, Juice, Tomatoes}

... these are **condensed** representations of frequent patterns, but do not retain information about the support of their subsets.

The Itemsets Lattice

Support of each itemset

TID	ltems
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

- •	A A	B	4		D	E)	
2 AB AC	2 AD	AE	3 BC	BD	1 BE	CD	CE	2 DE
2 ABC ABD	Q ABE	2 ACD	ACE	ADE	BCD	BCE	Q BDE	CDE
	ABCD	ABCE		DE (ACDE	BCDE)	• •
			ABC	DE)				

null

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

			(null)					
= 2	A A	3 B	C		3 D	S E		
AB AC	AD	AE	BC	1 BD	BE	CD	CE	DE
2 ABC ABD	O ABE	2 ACD	ACE (ADE	BCD	BCE	Q BDE	CDE
	ABCD	ABCE	O ABDE			BCDE	<i>\</i>	
			ABCDE					

00

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

00

TID	ltems
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

The border is a graph cut and ...

- All itemsets above the border are frequent
- All itemsets **below** the border are **not frequent**
- All maximal frequent itemsets are adjacent to the border
- Any border respects the downward closure property

Summary

Things to remember

- Itemset, k-itemset, transaction, support
- Support monotonicity property
- Maximal and closed itemsets
- Itemset lattice

Exercises for TT11-TT12

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises $4.9 \rightarrow 1-3, 5, 7-8$
 - Exercises $5.7 \rightarrow 1-5$
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al.
 - Exercises $6.1.5 \rightarrow 6.1.1-6.1.7$
- Introduction to Data Mining 2nd edition (2019) by Tan et al.
 - Exercises $5.10 \rightarrow 2-7$