Locality-Sensitive Hashing

(LSH)

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo - https://chato.cl/teach Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

Source for this deck

- Mining of Massive Datasets $2^{\text {nd }}$ edition (2014) by Leskovec et al. (Chapter 3) [slides ch3]

Locality-sensitive hashing

Final step: locality-sensitive hashing

LSH: first idea

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., $s=0.8$)
- LSH - General idea: Use a function $f(x, y)$ that tells whether (x, y) is a "candidate pair", with similarity likely to be $\geq s$
- We will compute an auxiliary structure over \boldsymbol{M}

1) Hash each column of the signature matrix \boldsymbol{M} to a bucket
2) A pair of columns that hashes to the same bucket is a candidate pair

Signature matrix M

$d 1$	$d 2$	$d 3$	$d 4$
2	1	4	1
1	2	1	2
2	1	2	1

Selecting candidates

- Pick a similarity threshold $s(0<s<1)$
- Columns \boldsymbol{x} and \boldsymbol{y} of \boldsymbol{M} are a candidate pair if their signatures agree
($\boldsymbol{M}(\boldsymbol{i}, \boldsymbol{x})=\boldsymbol{M}(\boldsymbol{i}, \boldsymbol{y})$) on at least fraction \boldsymbol{s} of their rows
Signature matrix M
- Remember we showed that documents \boldsymbol{x} and \boldsymbol{y} will have a similar (Jaccard) similarity as their signatures

d 1	d 2	d 3	d 4
2	1	4	1
1	2	1	2
2	1	2	1

Creating buckets of similar documents

- Hash columns of signature matrix M
- Make sure that (only) similar columns are likely to hash to the same bucket, with high probability
- Only check the pairs that hash to the same bucket

Signature matrix M

d 1	d 2	d 3	d 4
2	1	4	1
1	2	1	2
2	1	2	1

Partition M into b bands of size r

Signature matrix M

Partition M into b bands of size r (cont.)

- Remember that M has one column per document and as many rows as the signature length
- Partition matrix \boldsymbol{M} into \boldsymbol{b} bands of \boldsymbol{r} rows
- For each band, hash its portion of each column to a hash table with \boldsymbol{k} buckets
- If \boldsymbol{k} is large we use more memory but there are less spurious collisions
- Candidate column pairs are those that hash to the same bucket for $\geq \mathbf{1}$ band
- Tune \boldsymbol{b} and \boldsymbol{r} to catch many similar pairs, but few non-similar pairs

Signature matrix M

d1	d2	d3	$d 4$
2	1	4	1
1	2	1	2
2	1	2	1

Hashing bands

Simplifying assumption: no collisions (no false positives)

- We will assume there are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Computing LSH errors

- Assume the following case:
- 100,000 documents $=100,000$ columns in M
- 100 integers/signature $=100$ rows in M
- $100,000 \times 100=10 \mathrm{M}$ integers $\times 4$ bytes/integer $=40 \mathrm{Mb}$ of disk space
- Choose $b=20$ bands of $r=5$ integers/band
- Note that $\mathrm{b} \times \mathrm{r}$ should be the number of integers in each signature
- Suppose our goal is to find pairs of documents that are at least 0.8 similar

Computing LSH errors (cont.)

- Find pairs having at least 0.8 similarity with $\mathbf{b}=\mathbf{2 0}, \mathrm{r}=5$
- Whenever $\operatorname{sim}(C 1, C 2)>s$, we want $\mathrm{C} 1, \mathrm{C} 2$ to be a candidate pair
- We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability $\mathrm{C} 1, \mathrm{C} 2$ identical in one particular band: $(0.8)^{5}=0.328$
- Probability C1, C2 are not similar in any of the 20 bands:
- $(1-0.328)^{20}=0.00035$
- i.e., about $1 / 3000$ th of the 80%-similar column pairs are false negatives (we will miss them)
- We would find 99.965% pairs of truly similar documents

Computing LSH errors (cont.)

- Find pairs having at least 0.8 similarity with $b=20, r=5$
- Whenever $\operatorname{sim}(\mathrm{C} 1, \mathrm{C} 2)<\mathrm{s}$, we do not want C1, C2 to be a candidate pair
- Suppose $\operatorname{sim}(\mathrm{C} 1, \mathrm{C} 2)=0.3$; the probability that $\mathrm{C} 1, \mathrm{C} 2$ are identical in one particular band:
- $(0.3)^{5}=0.00243$
- Probability C1, C2 identical in at least 1 of 20 bands:
- $1-(1-0.00243)^{20}=0.0474$
- In other words, approximately 4.74% pairs of docs with similarity 0.3 end up becoming candidate pairs -- they are false positives since we will have to examine them but then it will turn out their similarity is below threshold s

Designing a good LSH scheme

- Tune the number of permutations (bx3), the number of bands (b), and the number of rows per band (r) to
- get almost all pairs with similar signatures
- eliminate most pairs that do not have similar signatures
- After finding candidates, we always have to check in main memory that candidate pairs really do have similar signatures

Summary

Things to remember

- Locality-Sensitive Hashing allows us to focus on pairs of signatures likely to be from similar documents
- Remember the general idea and what are bands/rows
- Additional materials on LSH available from the theory page of the course

Exercises for TT08-TT09

- Mining of Massive Datasets $2^{\text {nd }}$ edition (2014) by Leskovec et al.
- Exercises 3.1.4 (Jaccard similarity)
- Exercises 3.2.5 (Shingling)
- Exercises 3.3.6 (Min hashing)
- Exercises 3.4.4 (Locality-sensitive hashing)

