
Finding Near-Duplicates

Mining Massive Datasets
Materials provided by Prof. Carlos Castillo — https://chato.cl/teach
Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

https://chato.cl/teach
https://tbuda.github.io/

Source for this deck

● Mining of Massive Datasets 2nd edition (2014)
by Leskovec et al. (Chapter 3) [slides ch3]

http://www.mmds.org/mmds/v2.1/ch03-lsh.pptx

Fast near-neighbor applications
● For documents

− Find “legitimate” duplicates
● Copies of the same press release or cable
● Mirrors of the same documents, for efficiency

− Find “illegitimate” duplicates
● Plagiarism

● For baskets
− Find customers who purchase similar items

Example: plagiarism detection

Fast near-neighbor challenges

● Too many documents to compare all pairs
− OK to pay linear or log cost, but not quadratic

● Documents cannot fit in main memory
− They are too large or too many

● Many small pieces of one document can appear
out of order in another

Shingling
(ngrams)

First step: shingling

S
hi

ng
lin

g
Document M

in

H
as

hi
ng

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similaritySets of

k letters or words
that appear
consecutively
in the document

Naïve solution:
feature selection over bag of words

● Document = set of terms
− → Document = set of important terms

● Now, compute all pairs similarity

● Doesn’t work for at least two reasons, why?

Naïve solution:
feature selection over bag of words

● Document = set of terms
− → Document = set of important terms

● Now, compute all pairs similarity

● Doesn’t work for at least two reasons, why?
− Doesn’t preserve the ordering
− Unimportant terms are also relevant (stylistic)

Shingles
● An n-gram in a document is a sequence of n tokens

that appears in the document
● Shingles are either n-grams (word-level) or sequences

of characters (“character n-grams”), depending on the
application

● Character-level example: k=2; document D1 = abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}
− Option: Shingles as a bag (multiset), count ab twice: S’(D1) =

{ab, bc, ca, ab}

Example: 4-grams
● E.g., 4-shingles of

“My name is Inigo Montoya. You killed my father. Prepare
to die”:

● {
● my name is inigo
● name is inigo montoya
● is inigo montoya you
● inigo montoya you killed
● montoya you killed my
● you killed my father
● killed my father prepare
● my father prepare to
● father prepare to die

● }

Compressed representation of
shingles

● To compress long shingles, we can hash them to (say) 4
bytes

● Represent a document by the set of hash values of its
k-shingles
− Note we could have false positives due to hash collisions

● Example: k=2; document D1= abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}
Hash the singles (example): h(D1) = {1, 5, 7}

Documents as sets of shingles
● A document is now a set of shingles

− Dimensionality reduced from “words in a dictionary” to “number of
distinct shingles”

− Higher dimensionality but more sparse

● Working assumption
− Documents that have lots of shingles in common have similar

text, even if the text appears in different order

● In practice, k should be large enough, or most documents will
have most shingles
− k = 5 is OK for short documents
− k = 10 is better for long documents

Using shingles directly
● Suppose we need to find near-duplicate documents

among one million documents
● Naïvely, we would have to compute all pairwise Jaccard

similarities ≈ 5*1011 comparisons
● At 105 secs/day and 106 comparisons/sec, it would take

5 days
● For 10 million documents, it takes more than a year…

Min hashing

Next step: min hashing

S
hi

ng
lin

g
Document M

in

H
as

hi
ng

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similaritySets of

k letters or words
that appear
consecutively
in the document

Sets can be bit vectors
● Many similarity problems involve finding subsets with

substantial intersection

● Remember we can encode sets using bit vectors
− set intersection = bitwise AND
− set union = bitwise OR

● Example: C1 = 10111; C2 = 10011
− Size of intersection = 3; size of union = 4,
− Jaccard similarity (not distance) = 3/4
− Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4

From sets to boolean matrices
● Rows = items (shingles)
● Columns = sets (documents)

− 1 in row e and column s if and
only if e is a member of s

● Column similarity is the Jaccard
similarity of the corresponding
sets (rows with value 1)

● Typical matrix is very sparse! 0101

0111

1001

1000

1010
1011

0111
Documents

S
hi

ng
le

s

Hashing set representations

● We don’t want to compare c1, c2, they might be
too large, slowing down the computation

● Instead, we compute signatures h(c1), h(c2) that
are smaller in size than c1 and c2

● Desired properties:
c1 = c2 ⇒ Prob.(h(c1) = h(c2)) is large
c1 ≠ c2 ⇒ Prob.(h(c1) ≠ h(c2)) is large

Hashing set representations (cont.)
● Naïve approach (non-LSH-based):

− 1) Compute signatures of columns: small summaries of columns

− 2) Examine all pairs of signatures to find similar columns
● Essential: Similarities of signatures and columns are related

− 3) Optional: verify that columns with similar signatures are really similar

● Warnings:
− Comparing all pairs may take too much time: Job for LSH

− These methods can produce false negatives, and even false positives
(if the optional check is not made)

Hash function for Jaccard metric:
min hashing

● Imagine the rows of the boolean matrix permuted under
random but fixed permutation π

● Define a “hash” function hπ(C) = the index of the first
(in the permuted order π) row in which column C has
value 1

● Use several (e.g., 100) independent hash functions (that
is, permutations) to create a signature of a column

Minhash example

3

4

7

2

6

1

5

Signature matrix
M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

4th element of the permutation
is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101

Rows=Shingles,
Columns=Documents Permutation

s D1 D2 D3 D4
 D1 D2 D3 D4

Exercise: shingling3

2

1

4

7

5

6 0101

0101

1010

1010

1010

1001

0101

Index of the bit vector
position where the first 1
occurs according to the
ordering of the permutation

 D1 D2 D3 D4

 D1 D2 D3 D4
Signature matrix
M

Rows=Shingles,
Columns=Documents Permutatio

n

Pin board: https://upfbarcelona.padlet.org/chato/bu8ekcrferwf6lv5

https://upfbarcelona.padlet.org/chato/bu8ekcrferwf6lv5

Answer

3

2

1

4

7

5

6

1312

0101

0101

1010

1010

1010

1001

0101
 D1 D2 D3 D4

 D1 D2 D3 D4
Signature matrix
M

Rows=Shingles,
Columns=Documents Permutatio

n

Minhash approximates Jaccard
● Let π be a random permutation
● Let hπ(S) be the first element of S under the

permutation π
● If hπ(A) = hπ(B) and there are no collisions, then:
− Among all elements in A ∪ B …
− … the chosen element is in A ∩ B

● This happens with probability |A ∩ B|/|A ∪ B| =
Jaccard(A, B)

● Hence Pr[hπ(A) = hπ(B)] = Jaccard(A, B)

We will use multiple permutations

● Jaccard(A, B) = E[hπ(A) = hπ(B)]
− = number of matches / number of permutations

● We will use many permutations, e.g., 100

Example: three permutations

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 3

4

7

2

6

1

5

 D1 D2 D3 D4
 D1 D2 D3 D4
Signature matrix
M

Rows=Shingles,
Columns=Documents Permutation

s

Similarities 1-3 2-4 1-2 3-4

Complete 0.75 0.75 0 0

Signatures 0.67 1.00 0 0

Minhash signatures
● Pick π1 … π100 random permutations of the rows (K=100)
● Think of sig(C) as a column vector

− sig(C)[i] = according to the i-th permutation, the index of
the first row that has a 1 in column C

− sig(C)[i] = min (πi(C))
● The signature or “sketch” of document C has fixed size!

− We achieved our goal: we “compressed” long bit vectors
into short signatures

Implementation

● Permuting rows even once is prohibitive
● Instead, we create π1 … π100 by using K = 100 hash

actual functions Hi … which map to integer numbers
− Ordering of {1,2,…,n} under Hi

● … i.e., computing h(1), h(2), …, h(n) and sorting
− … is a random permutation!

Summary

Things to remember
● Shingling: Convert documents to sets

− We used hashing to assign each shingle an ID

● Min-Hashing: Convert large sets to short
signatures, while preserving similarity
− We used similarity preserving hashing to

generate signatures with property Pr[hπ(C1) = hπ(C2)] = sim(C1, C2)
− We used hashing to get around generating random

permutations

Exercises for TT08-TT09

● Mining of Massive Datasets 2nd edition (2014)
by Leskovec et al.
− Exercises 3.1.4 (Jaccard similarity)
− Exercises 3.2.5 (Shingling)
− Exercises 3.3.6 (Min hashing)
− Exercises 3.4.4 (Locality-sensitive hashing)

