## Finding Near-Duplicates

## Mining Massive Datasets

Materials provided by Prof. Carlos Castillo - https://chato.cl/teach Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

## Source for this deck

- Mining of Massive Datasets $2^{\text {nd }}$ edition (2014) by Leskovec et al. (Chapter 3) [slides ch3]


## Fast near-neighbor applications

- For documents
- Find "legitimate" duplicates
- Copies of the same press release or cable
- Mirrors of the same documents, for efficiency
- Find "illegitimate" duplicates
- Plagiarism
- For baskets
- Find customers who purchase similar items


## Example: plagiarism detection

| orginaly | GradMaik | reem | anorexia essay | turnitin (1) | 90\% | -- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | What is anorexia nervosa? <br> Anorexia pervosa is a distorted body image that overestimates personal bod fatness and an eating disorder affecting mainly girls or women, 7 although boys or men can also suffer from it. It usually starts in the teenage years. It is estimated tha about one out of every 100 adolescent girls has the disorder. Caucasians are more often affected than people of other racial backgroupds, and anorexia is more common in middle and upper socioeconomic groups. The overwhelming desire to become thing drives people with anorexia nervosa to refuse to eat even when they are hungry. Although adults often describe people with anorexia as "model students" their personal lives are usually marred by low self-esteem, social isolation and unhappiness. Anorexia nervosa cannot be self-diagnosed. |  |  | Match Ove |  | -0. ln |
|  |  |  |  | 1 wrweca | liancre.com | 28\% |
|  |  |  |  | 2 Submit | to Universit.. | 16\% |
|  |  |  |  | 3 blogs.n | pace.com | 15\% |
|  |  |  |  | 4 Submit | to Universit.. | 10\% |
|  |  |  |  | 5 muwar | re.com | 8\% |

## turnitin

## Fast near-neighbor challenges

- Too many documents to compare all pairs
- OK to pay linear or log cost, but not quadratic
- Documents cannot fit in main memory
- They are too large or too many
- Many small pieces of one document can appear out of order in another


## Shingling (ngrams)

## First step: shingling



## Naïve solution:

## feature selection over bag of words

- Document $=$ set of terms
$-\rightarrow$ Document $=$ set of important terms
- Now, compute all pairs similarity
- Doesn't work for at least two reasons, why?


## Naïve solution:

## feature selection over bag of words

- Document = set of terms
- $\rightarrow$ Document = set of important terms
- Now, compute all pairs similarity
- Doesn't work for at least two reasons, why?
- Doesn't preserve the ordering
- Unimportant terms are also relevant (stylistic)


## Shingles

- An n-gram in a document is a sequence of $n$ tokens that appears in the document
- Shingles are either n-grams (word-level) or sequences of characters ("character n-grams"), depending on the application
. Character-level example: $\mathrm{k}=2$; document $\mathrm{D} 1=\mathrm{abcab}$ Set of 2-shingles: S(D1) = \{ab, bc, ca\}
- Option: Shingles as a bag (multiset), count ab twice: $S^{\prime}(D 1)=$ \{ab, bc, ca, ab\}


## Example: 4-grams

- E.g., 4-shingles of "My name is Inigo Montoya. You killed my father. Prepare to die":
- \{
- my name is inigo
- name is inigo montoya
- is inigo montoya you
- inigo montoya you killed
- montoya you killed my
- you killed my father
- killed my father prepare
- my father prepare to

- father prepare to die


## Compressed representation of shingles

- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a document by the set of hash values of its k-shingles
- Note we could have false positives due to hash collisions
- Example: k=2; document D1= abcab Set of 2-shingles: $S(D 1)=\{a b, b c, c a\}$ Hash the singles (example): $h(D 1)=\{1,5,7\}$


## Documents as sets of shingles

- A document is now a set of shingles
- Dimensionality reduced from "words in a dictionary" to "number of distinct shingles"
- Higher dimensionality but more sparse
- Working assumption
- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- In practice, k should be large enough, or most documents will have most shingles
- $k=5$ is OK for short documents
- $k=10$ is better for long documents


## Using shingles directly

- Suppose we need to find near-duplicate documents among one million documents
- Naïvely, we would have to compute all pairwise Jaccard similarities $\approx 5^{*} 10^{11}$ comparisons
- At $10^{5} \mathrm{secs} /$ day and $10^{6}$ comparisons $/ \mathrm{sec}$, it would take 5 days
- For 10 million documents, it takes more than a year


## Next step: min hashing



## Sets can be bit vectors

- Many similarity problems involve finding subsets with substantial intersection
- Remember we can encode sets using bit vectors
- set intersection = bitwise AND
- set union = bitwise OR
- Example: $\mathbf{C}_{1}=10111 ; \mathbf{C}_{2}=10011$
- Size of intersection $=3$; size of union $=4$,

$$
J\left(C_{1}, C_{2}\right)=\frac{\left|C_{1} \cap C_{2}\right|}{\left|C_{1} \cup C_{2}\right|}
$$

- Distance: $d\left(C_{1}, C_{2}\right)=1-($ Jaccard similarity $)=1 / 4$


## From sets to boolean matrices

- Rows = items (shingles)
- Columns = sets (documents)
- 1 in row e and column s if and only if $e$ is a member of $s$
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is very sparse!

Documents

| 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 |
| $\frac{\infty}{\infty}=0$ | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 |

## Hashing set representations

- We don't want to compare $\mathrm{c}_{1}, \mathrm{c}_{2}$, they might be too large, slowing down the computation
- Instead, we compute signatures $\mathrm{h}\left(\mathrm{c}_{1}\right), \mathrm{h}\left(\mathrm{c}_{2}\right)$ that are smaller in size than $\mathrm{c}_{1}$ and $\mathrm{c}_{2}$
- Desired properties:
$c_{1}=c_{2} \Rightarrow$ Prob. $\left(h\left(c_{1}\right)=h\left(c_{2}\right)\right)$ is large
$c_{1} \neq c_{2} \Rightarrow$ Prob. $\left(h\left(c_{1}\right) \neq h\left(c_{2}\right)\right)$ is large


## Hashing set representations (cont.)

- Naïve approach (non-LSH-based):
- 1) Compute signatures of columns: small summaries of columns
- 2) Examine all pairs of signatures to find similar columns
- Essential: Similarities of signatures and columns are related
- 3) Optional: verify that columns with similar signatures are really similar
- Warnings:
- Comparing all pairs may take too much time: Job for LSH
- These methods can produce false negatives, and even false positives (if the optional check is not made)


## Hash function for Jaccard metric: min hashing

- Imagine the rows of the boolean matrix permuted under random but fixed permutation $\pi$
- Define a "hash" function $h_{\pi}(C)=$ the index of the first (in the permuted order $\boldsymbol{\pi}$ ) row in which column $\boldsymbol{C}$ has value 1
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column


## Minhash example

Rows=Shingles,
PermutatioColumnRs=DoDRımeDBs D4


Rows=Shingles, Permotatiannsf(Docafnenes D4

| 3 | 1 0 <br> 2 1 | 0  <br> 1 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 7 | 0 | 1 | 0 | 1 |
| 5 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 |  |
| 1 | 0 | 1 | 0 |  |
| 1 | 0 | 1 | 0 |  |

## Exercise: shingling

Signature matrix


Index of the bit vector position where the first 1 occurs according to the ordering of the permutation


## Answer

Rows=Shingles, PermgtatifnnsłDodRmendes D4


## Minhash approximates Jaccard

- Let $\pi$ be a random permutation
- Let $h_{\pi}(\mathrm{S})$ be the first element of $S$ under the permutation $\pi$
- If $h_{\pi}(\mathrm{A})=h_{\pi}(\mathrm{B})$ and there are no collisions, then:
- Among all elements in $A \cup B \ldots$
- ... the chosen element is in $A \cap B$
- This happens with probability $|A \cap B| /|A \cup B|=$ Jaccard(A, B)
- Hence $\operatorname{Pr}\left[h_{\pi}(\mathrm{A})=h_{\pi}(\mathrm{B})\right]=\operatorname{Jaccard}(\mathrm{A}, \mathrm{B})$


## We will use multiple permutations

- $\operatorname{Jaccard}(\mathrm{A}, \mathrm{B})=\mathrm{E}\left[h_{\pi}(\mathrm{A})=h_{\pi}(\mathrm{B})\right]$
- = number of matches / number of permutations
- We will use many permutations, e.g., 100


## Example: three permutations

Rows=Shingles,
Permutatio olumris=DoRzımenBs D4

| 2 | 4 | 3 | 1 | 0 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 2 | 4 | 1 | 0 | 0 | 1 |
| 7 | 1 | 7 | 0 | 1 | 0 | 1 |
| 6 | 3 | 2 | 0 | 1 | 0 | 1 |
| 1 | 6 | 6 | 0 | 1 | 0 | 1 |
| 5 | 7 | 1 | 1 | 0 | 1 | 0 |
| 4 | 5 | 5 | 1 | 0 | 1 | 0 |

Signature matrix


| Similarities | $1-3$ | $2-4$ | $1-2$ | $3-4$ |
| :--- | :--- | :--- | :--- | :--- |
| Complete | 0.75 | 0.75 | 0 | 0 |
| Signatures | 0.67 | 1.00 | 0 | 0 |

## Minhash signatures

- Pick $\pi_{1} \ldots \pi_{100}$ random permutations of the rows ( $K=100$ )
- Think of $\operatorname{sig}(\mathrm{C})$ as a column vector
- $\operatorname{sig}(\mathrm{C})[i]=$ according to the $i$-th permutation, the index of the first row that has a 1 in column $C$
$-\operatorname{sig}(\mathrm{C})[\mathrm{i}]=\min \left(\pi_{\mathrm{i}}(\mathrm{C})\right)$
- The signature or "sketch" of document $C$ has fixed size!
- We achieved our goal: we "compressed" long bit vectors into short signatures


## Implementation

- Permuting rows even once is prohibitive
- Instead, we create $\pi_{1} \ldots \pi_{100}$ by using $K=100$ hash actual functions $H_{i}$... which map to integer numbers
- Ordering of $\{1,2, \ldots, n\}$ under $H_{i}$
- ... i.e., computing $h(1), h(2), \ldots, h(n)$ and sorting
- ... is a random permutation!


## Summary

## Things to remember

- Shingling: Convert documents to sets
- We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
- We used similarity preserving hashing to generate signatures with property $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\right.$ $\left.\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$
- We used hashing to get around generating random permutations


## Exercises for TT08-TT09

- Mining of Massive Datasets $2^{\text {nd }}$ edition (2014) by Leskovec et al.
- Exercises 3.1.4 (Jaccard similarity)
- Exercises 3.2.5 (Shingling)
- Exercises 3.3.6 (Min hashing)
- Exercises 3.4.4 (Locality-sensitive hashing)

