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Main Sources
● Data Mining, The Textbook (2015) by Charu Aggarwal 

(Chapter 3) + slides by Lijun Zhang
● Data Mining Concepts and Techniques, 3rd edition 

(2011) by Han et al. (Section 2.4)
● Introduction to Data Mining 2nd edition (2019) by Tan 

et al. (Chapter 2)
● Mining of Massive Datasets 2nd edition (2014) by 

Leskovec et al.
(Chapter 3)

https://cs.nju.edu.cn/zlj/Course/DM_15.html
http://infolab.stanford.edu/~ullman/mmds/ch3n.pdf


Example: scene completion

Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 3)



Scene completion problem

[Hays and Efros, SIGGRAPH 2007]



10 closest items in a collection of 20K images



10 closest items in a collection of 2M images



Computing similarity



Computing similarity is important
● Many problems can be expressed as  finding “similar” sets:

− Find near-neighbors in high-dimensional space

● Examples:
− Pages with similar words, for duplicate detection or for 

classification by topic
− Customers who purchased similar products, or products with 

similar customers
− Images with similar features
− Users who visited similar websites



Similarity computation task

● Given two objects u and v, determine the value of:
− similarity(u,v) and distance(u,v) Often one is defined in terms of the 

other

● Similar objects should have
large similarity and small distance

● Dissimilar objects should have
small similarity and large distance

● We can use closed-form functions (e.g., euclidean distance) or an 
algorithm



Simple single-attribute similarity

Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapter 2)



Some distance
measures

https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa 

https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa


Euclidean distance: L2 norm

Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapter 2)



Lp norm, p ≥ 1

● p=1 : Manhattan norm
− Sum of absolute values

● p=2: Euclidean norm
− Square root of sum of squares
− Rotation-invariant

● p=∞ : Infinity norm
− Largest absolute value



Generalized Lp norm, p ≥ 1

● Useful when some
features are more
important than others

● Coefficients ai are domain-specific, typically 
non-negative



Exercise: compute Lp distance
● Given vectors
− u = (22, 1, 42, 10)
− v = (20, 0, 36, 8)

● Compute:
− L1 distance
− L2 distance
− L∞ distance



Answer

● Compute L1, L2, L∞
norm between:
− (22, 1, 42, 10)
− (20, 0, 36, 8)





When the dimensionality is high, all points are 
similarly far from each other

Imagine a hypercube of side 2r 
in d dimensions. This 
hypercube has volume (2r)d 2

r



When the dimensionality is high, all points are similarly far from each other

The corners are at distance
from the center of the hypercube

That distance increases without bound 
as the dimensionality increases!

Now, let us imagine a hypersphere of 
radius r inside the hypercube ...



When the dimensionality is high, all points are similarly far from each other

The corners are at distance
from the center of the hypercube, which 
increases as the dimensionality 
increases

This means that a random point sampled 
from the hypercube is increasingly likely 
to be at distance larger than r from the 
center, i.e., outside of the hypersphere

Datawow, 2020

https://datawow.io/blogs/the-curse-of-dimensionality-c99409eb58e9


When the dimensionality is high, all points are similarly far from each other

Indeed, most of the points will be neither 
inside the hypersphere (as we have 
seen) nor near the corners, but at 
distance 

Wikipedia: Curse of Dimensionality dimensionality 
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Datawow, 2020

https://en.wikipedia.org/wiki/Curse_of_dimensionality#Distance_function
https://datawow.io/blogs/the-curse-of-dimensionality-c99409eb58e9


Often, less dimensions are better



Tony Yiu, 2019

Often, less dimensions are better.

Suppose you have the following dataset 
of candy flavors represented in two 
dimensions. From this we can easily find 
two clusters, and learn that reddish 
candy are sweet and blueish candy are 
sour.

is_reddish is_blueish flavor

1 0 sweet

1 0 sweet

1 0 sweet

0 1 sour

0 1 sour

0 1 sour

https://towardsdatascience.com/the-curse-of-dimensionality-50dc6e49aa1e


Tony Yiu, 2019

Now we add more 
dimensions … but now 
all points are equally far 
from each other, there 
are basically six 
clusters, and we can 
just conclude that three 
candy are sweet and 
three candy are sour

is_red is_ora is_pnk is_nvy is_lbl is_blu flavor

1 0 0 0 0 0 sweet

0 1 0 0 0 0 sweet

0 0 1 0 0 0 sweet

0 0 0 1 0 0 sour

0 0 0 0 1 0 sour

0 0 0 0 0 1 sour

https://towardsdatascience.com/the-curse-of-dimensionality-50dc6e49aa1e


Match-based similarity

Idea: to compute similarity(u,v) ignore dimensions in which 
they are “too far apart”

1)  Discretize each dimension into kd equi-depth buckets

2)  For two objects u, v, determine the dimensions in which 
they map to the same bucket

3)  Compute Lp norm on those dimensions only



Match-based similarity (cont.)

● S(X, Y, kd) is the set of features for which
X and Y map to the same bucket 

● mi, ni are the max and min value of that bucket
● kd ∝ d achieves a constant level of contrast in high 

dimensions for certain data distributions



Distances and orientation



Useful distances, in general, depend 
on data distributions

Points A and B are 
equidistant from the origin
However, point A should 
be considered closer to 
the origin than point B 
(think of a perfectly 
circular cloud of points)



Useful distances, in general, depend on 
data distributions (cont.)

The Mahalanobis 
distance, with Σ 
covariance matrix 

is equivalent to applying 
PCA, dividing each 
coordinate by the 
standard deviation of that 
feature, and computing 
Euclidean distance



Non-linear distributions

Which point 
would you 
consider as  
closer to A?

(Blackboard collaborate poll)



ISOMAP (general idea)

     Original data         Nearest neighbors graph       Graph projection

Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. "A global geometric framework for nonlinear dimensionality reduction." Science 2000.



ISOMAP (1/3)

The first step is to connect each point to 
its k nearest neighbors (here k=7)

Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. "A global geometric framework for nonlinear dimensionality reduction." Science 2000.



ISOMAP (2/3)

Now, shortest path or geodesic distances 
can be computed on the graph

(red color)

Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. "A global geometric framework for nonlinear dimensionality reduction." Science 2000.



ISOMAP (3/3)

It is, however, more effective to project the 
graph and compute Euclidean distances in 

the projected graph (blue color)

Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. "A global geometric framework for nonlinear dimensionality reduction." Science 2000.



Local variations
Which distance should be larger? A-B or C-D? Which distance should be larger? A-B or C-D?



(Answer: in both cases
C-D should be larger than A-B)



Solution for local variations
● Partition the data into a set of local regions

− (Nontrivial, which distance to use?)

● For any pair of objects, determine the most relevant region for the pair

● If they belong to the same region
− Compute the pairwise distances using the local statistics of that region

− E.g., local Mahalanobis distance

● If they belong to different regions
− Global statistics or averaged statistics



Summary



Things to remember

● Distance/similarity is a key component of many 
data mining algorithms

● Sensitive to dimensionality
− In many cases, having less dimensions is better

● Sensitive to local nature of data distribution



Exercises for TT06-TT07

● Data Mining, The Textbook (2015) by Charu Aggarwal
− Exercises 3.9 on similarity measures 

● Introduction to Data Mining 2nd edition (2019) by Tan et al.
− Exercises 2.6 → 14-28

● Mining of Massive Datasets 2nd edition (2014) by Leskovec et al.
− Exercises 3.5.7 on distance measures

● Data Mining Concepts and Techniques, 3rd ed. (2011) by Han et al.
− Exercises 2.6 → 2.5-2.8


