Data Preparation:

Reduction and Transformation

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo - https://chato.cl/teach Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

Main Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapter 2) + slides by Lijun Zhang
- Introduction to Data Mining $2^{\text {nd }}$ edition (2019) by Tan et al. (Chapter 2)
- Data Mining Concepts and Techniques, $3^{\text {rd }}$ edition (2011) by Han et al. (Chapter 3)

Data reduction and transformation

- Sampling
- 工"Less rows"
- Dimensionality Reduction or Feature Selection
_ 工 "Less columns"

Why reduce/transform data?

- Advantages
- Reduce space complexity
- Reduce time complexity
- Reduce noise
- Reveal hidden structures (e.g., manifold learning)
- Disadvantages
- Information loss

Sampling for static data

- Uniform random sampling
- with/without replacement
- Biased sampling
- e.g., emphasize recent items
- Stratified sampling
- Partition data in strata, sample in each stratum

Sampling example

- There are 10000 people which contain 100 millionaires
- Uniform random sample of 100 people
- In expectation, one millionaire will be sampled
- There is $\simeq 37 \%$ chance no millionaires are sampled, why?
- Stratified Sampling
- Unbiased Sampling 1 from 100 millionaires
- Unbiased Sampling 99 from remaining

Sampling from data streams

- Suppose you want to give away for free 10 VIP passes at a concert
- You want everybody to have exactly the same chance of getting the VIP pass, independently on when they arrived, as long they arrive before the concert starts
- Once people leave the entrance area they become impossible to find, so if you win, you should receive the VIP pass at the door
- People arrive in sequence, and you do not know how many people will arrive
- Reservoir sampling algorithm ... seen in the stream processing part

Reducing data dimensionality

Note: PCA/SVD covered well in other courses, won't be part of our exam

Feature selection

- Unsupervised Feature Selection
- Using the performance of unsupervised learning (e.g, clustering) to guide the selection
- Supervised Feature Selection
- Using the performance of supervised learning (e.g., classification) to guide the selection

An axis rotation may help :-)

IN WHAT PARKING SPOT NUMBER IS THE CAR PARKED?

Source: Centauro Blog (2017)

Dimensionality reduction with axis rotation (perfect case)

- Motivation: three points in a line in two-dimensional space

$$
\begin{aligned}
& \mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \mathbf{x}_{2}=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \\
& \mathbf{x}_{3}=\left[\begin{array}{l}
3 \\
3
\end{array}\right]
\end{aligned}
$$

Dimensionality reduction with axis rotation (perfect case, cont.)

- Coordinates after axes rotation

$$
\begin{aligned}
& \mathbf{x}_{1}=\left[\begin{array}{c}
\sqrt{2} \\
0
\end{array}\right] \\
& \mathbf{x}_{2}=\left[\begin{array}{c}
2 \sqrt{2} \\
0
\end{array}\right] \\
& \mathbf{x}_{3}=\left[\begin{array}{c}
3 \sqrt{2} \\
0
\end{array}\right]
\end{aligned}
$$

Dimensionality reduction with axis rotation (perfect case, cont.)

- Coordinates after axes rotation

Drop second coordinate, no information is lost.

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
\sqrt{2} \\
\hat{\theta}
\end{array}\right]
$$

$$
\mathbf{x}_{2}=\left[\begin{array}{c}
2 \sqrt{2} \\
\theta
\end{array}\right]
$$

2D data
reduced to 1D data

Dimensionality reduction with axis rotation (noisy case)

- Suppose points don't lie exactly on a line

$$
\begin{aligned}
& \mathbf{x}_{1}=\left[\begin{array}{c}
1 \\
0.9
\end{array}\right] \\
& \mathbf{x}_{2}=\left[\begin{array}{c}
2.1 \\
2
\end{array}\right] \\
& \mathbf{x}_{3}=\left[\begin{array}{l}
2.9 \\
3.1
\end{array}\right]
\end{aligned}
$$

Dimensionality reduction with axis rotation (noisy case, cont.)

- Suppose points don't lie exactly on a line

$$
\begin{aligned}
& \mathbf{x}_{1}=\left[\begin{array}{l}
1.34 \\
0.07
\end{array}\right] \\
& \mathbf{x}_{2}=\left[\begin{array}{l}
2.89 \\
0.07
\end{array}\right] \\
& \mathbf{x}_{3}=\left[\begin{array}{c}
4.24 \\
-0.14
\end{array}\right]
\end{aligned}
$$

Dimensionality reduction with axis rotation (noisy case, cont.)

- Suppose points don't lie exactly on a line

How does this work in reality?

- Change of axes removes correlations and reduces dimensionality
- Techniques
- Principal Component Analysis (PCA)
- Singular-Value Decomposition (SVD)

Summary

Things to remember

- Data sampling methods
- Why would we want to reduce dimensionality?
- What are the main techniques for doing so

Exercises for TT03-TT05

- Exercises 3.7 of Data Mining Concepts and Techniques, $3^{\text {rd }}$ edition (2011) by Han et al.
- Exercises 2.6 of Introduction to Data Mining, Second Edition (2019) by Tan et al.
- Mostly the first exercises, say 1-6

Additional contents (not included in exams)

Axis rotation - formulation

- Points are usually described with respect to the standard basis

$$
\mathbf{x}=\left[\begin{array}{c}
x^{1} \\
x^{2} \\
\vdots \\
x^{d}
\end{array}\right] \in \mathbb{R}^{d} \longleftrightarrow \mathbf{x}=x^{1} \mathbf{e}_{1}+x^{2} \mathbf{e}_{2}+\cdots+x^{d} \mathbf{e}_{d}
$$

Axis rotation - formulation (cont.)

We will determine new coordinates under basis W :

$$
\begin{aligned}
W & =\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{d}\right] \text { is a orthonormal matrix } \\
\mathbf{x} & =W W^{\top} \mathbf{x}=\left(\sum_{i=1}^{d} \mathbf{w}_{i} \mathbf{w}_{i}^{\top}\right) \mathbf{x}=\sum_{i=1}^{d} \mathbf{w}_{i}\left(\mathbf{w}_{i}^{\top} \mathbf{x}\right) \\
& =\left(\mathbf{w}_{1}^{\top} \mathbf{x}\right) \mathbf{w}_{1}+\left(\mathbf{w}_{2}^{\top} \mathbf{x}\right) \mathbf{w}_{2}+\cdots+\left(\mathbf{w}_{d}^{\top} \mathbf{x}\right) \mathbf{w}_{d}
\end{aligned}
$$

Thus, the new coordinates are

$$
\mathbf{y}=\left[\begin{array}{c}
\mathbf{w}_{1}^{\top} \mathbf{x} \\
\mathbf{w}_{2}^{\top} \mathbf{x} \\
\vdots \\
\mathbf{w}_{d}^{\top} \mathbf{x}
\end{array}\right] \in \mathbb{R}^{d} \quad \begin{aligned}
& \text { Vector } x \text { has } n \text { dimensions, but } \\
& \text { vector } y \text { has } d \leq n \text { dimensions }
\end{aligned}
$$

PCA formulation: optimization

- Find new basis $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$, with $k \leq d$ such that the variance of this set is maximized:

$$
\left\{\mathbf{y}_{1}=\left[\begin{array}{c}
\mathbf{w}_{1}^{\top} \mathbf{x}_{1} \\
\mathbf{w}_{2}^{\top} \mathbf{x}_{1} \\
\vdots \\
\mathbf{w}_{k}^{\top} \mathbf{x}_{1}
\end{array}\right], \mathbf{y}_{2}=\left[\begin{array}{c}
\mathbf{w}_{1}^{\top} \mathbf{x}_{2} \\
\mathbf{w}_{2}^{\top} \mathbf{x}_{2} \\
\vdots \\
\mathbf{w}_{k}^{\top} \mathbf{x}_{2}
\end{array}\right], \cdots, \mathbf{y}_{n}=\left[\begin{array}{c}
\mathbf{w}_{1}^{\top} \mathbf{x}_{n} \\
\mathbf{w}_{2}^{\top} \mathbf{x}_{n} \\
\vdots \\
\mathbf{w}_{k}^{\top} \mathbf{x}_{n}
\end{array}\right]\right\}
$$

SVD formulation

- U and V are rotation matrices; Σ is a scaling matrix
- The rotated data is obtained by multiplying $U^{\top} X$

Algorithms for PCA and SVD

1. Calculate the mean vector $\overline{\mathbf{x}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$

- $\operatorname{PCA}\{$ 2. Calculate the covariance matrix $C=$ $\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top}$

3. Calculate the k-largest eigenvectors of C
$\left\{\right.$ 1. Calculate the mean vector $\overline{\mathbf{x}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$

- SVD 2. Calculate the k largest left singular vectors of $\bar{X}=\left[\mathbf{x}_{1}-\overline{\mathbf{x}}, \ldots, \mathbf{x}_{n}-\overline{\mathbf{x}}\right]$

