versita
upf Pompeu Fabra
reelona

Data Preparation:
Reduction and Transformation

Mining Massive Datasets
Materials provided by Prof. Carlos Castillo — https://chato.cl/teach
Instructor: Dr. Teodora Sandra Buda — https://tbuda.qithub.io/



https://chato.cl/teach
https://tbuda.github.io/

Main Sources

e Data Mining, The Textbook (2015) by Charu Aggarwal
(Chapter 2) + slides by Lijun Zhang

e Introduction to Data Mining 2" edition (2019) by Tan et
al. (Chapter 2)

e Data Mining Concepts and Techniques, 3" edition
(2011) by Han et al. (Chapter 3)



https://cs.nju.edu.cn/zlj/Course/DM_15.html

Data reduction and transformation

. Sampling
- =" ess rows”

. Dimensionality Reduction or Feature Selection

- = “Less columns”



Why reduce/transform data?

. Advantages
- Reduce space complexity
- Reduce time complexity
- Reduce noise
- Reveal hidden structures (e.g., manifold learning)

. Disadvantages
- Information loss




Sampling for static data

. Uniform random sampling
- with/without replacement

. Biased sampling
- e.g., emphasize recent items

. Stratified sampling
- Partition data in strata, sample in each stratum



Sampling example

. There are 10000 people which contain 100 millionaires

. Uniform random sample of 100 people
- In expectation, one millionaire will be sampled
- There is = 37% chance no millionaires are sampled, why?

. Stratified Sampling
- Unbiased Sampling 1 from 100 millionaires
- Unbiased Sampling 99 from remaining



Sampling from data streams

Suppose you want to give away for free 10 VIP passes at a
concert

- You want everybody to have exactly the same chance of getting
the VIP pass, independently on when they arrived, as long they
arrive before the concert starts

- Once people leave the entrance area they become impossible to
find, so if you win, you should receive the VIP pass at the door

- People arrive in sequence, and you do not know how many people
will arrive

Reservoir sampling algorithm ... seen in the stream
processing part



Reducing data dimensionality

Note: PCA/SVD covered well in other courses, won’t be part of our exam



Feature selection

. Unsupervised Feature Selection

- Using the performance of unsupervised learning
(e.g, clustering) to guide the selection

. Supervised Feature Selection

- Using the performance of supervised learning (e.g.,
classification) to guide the selection



An axis rotation may help :-)

IN WHAT PARKING SPOT NUMBER IS THE CAR PARKED?

Source: Centauro Blog (2017)



https://www.centauro.net/en/blog/smart-driver/a-6-year-old-boy-manages-to-solve-this-puzzle-in-less-than-20-seconds-can-you/

Dimensionality reduction with axis
rotation (perfect case)

. Motivation: three points in a line in
two-dimensional space

X, = 1] 4
1 b y
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X, = 2]
2 _2_ 21 @
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X2 = 3] I
3 = _3_ 1 2 3 X




Dimensionality reduction with axis
rotation (perfect case, cont.)

. Coordinates after axes rotation
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Dimensionality reduction with axis
rotation (perfect case, cont.)

. Coordinates after axes rotation

V2
Drop second X1 = \/— y
coordinate, no & ol ./z
information is i e 7
IOSt Xz — Zﬁ] \\\\ 2 (- ,,l
= & \\\\ ,/’
2D data \\1 _/’
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Dimensionality reduction with axis
rotation (noisy case)

. Suppose points don’t lie exactly on a line
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Dimensionality reduction with axis
rotation (noisy case, cont.)

. Suppose points don’t lie exactly on a line
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Dimensionality reduction with axis
rotation (noisy case, cont.)

. Suppose points don’t lie exactly on a line

134 .
Drop second 2 = [.9.9; y
coordinate, ' s o
some 2.891 °© g
information is Xy = [ 2 |- o’
lost. 067 X i
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2D data _[4.24 BN P — .
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How does this work in reality?

. Change of axes removes correlations and
reduces dimensionality

. Techniques
- Principal Component Analysis (PCA)
- Singular-Value Decomposition (SVD)



Summary



Things to remember

. Data sampling methods
. Why would we want to reduce dimensionality?

. What are the main techniques for doing so



Exercises for TTO3-TT05

. Exercises 3.7 of Data Mining Concepts and
echniques, 3" edition (2011) by Han et al.

. Exercises 2.6 of Introduction to Data Mining,
Second Edition (2019) by Tan et al.

- Mostly the first exercises, say 1-6



Additional contents
(not included in exams)

EX IRA




AXxis rotation - formulation

. Points are usually described with respect to the
standard basis

1

2
x=|*|e R ¢ > x=xle; +x%e, + -+ x%y

X




Axis rotation — formulation (cont.)

We will determine new coordinates under basis W-:

W = [wy,W,, ..., Wg] IS @ orthonormal matrix

d d
x=WWTx = (Z wiwl-T>x = Zwi(wiTx)
i=1 i=1

= (W X)Wy + (W3 X)Wy + -+ (WiX)wy

Thus, the new coordinates are

y:

_W]Tx_
w, X

T

W, X

€

}

Vector x has n dimensions, but

Rd/ vector y has d<n dimensions



PCA formulation: optimization

. Find new basis { W, W,, ..., W, }, with k < d such
that the variance of this set is maximized:

( Wy X; W, X5 Wy X,
T T T
_wy x _wox _(w)x
<y1_ 2. 1 ’yz — 2. Z ’...’yn_ 2. n
T T T
\ W, X W, X, W, X, |



SVD formulation

2

. U and V are rotation

matrices; 2 is a scaling
matrix

. The rotated data Is

obtained by multiplying
UTX



Algorithms for PCA and SVD

,
1. Calculate the mean vector x = %Z}lei

. PCA< 2. Calculate the covariance matrix ¢ =

~ 3 (x — R — X"

3 Calculate the k-largest eigenvectors of C

— 1
1. Calculate the mean vector x ==Y, x;

n

<
. SVD | 2. Calculate the k largest left singular
vectors of X = [x; — X, ..., X, — X]




