

Data, Methods, and Scenarios

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — <u>https://chato.cl/teach</u> Instructor: Dr. Teodora Sandra Buda — <u>https://tbuda.github.io/</u>

Main Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapter 1) + <u>slides by Lijun Zhang</u>
- Mining of Massive Datasets, 2nd edition (2014) by Leskovec et al. (<u>Chapter 1</u>)
- Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al. (Chapters 1-2)

Contents

- Types of data
- Types of problem
- Example scenarios
- Major challenges

Data types

Nondependency / Dependency

- Nondependency oriented data can be structured so items are separate
 - Relational data, text data
- Dependency oriented data includes relationships between items
 - Graphs, time series

Mixed attribute data

- Most attributes we will deal with are numerical, they quantify something
- . Sometimes attributes are categorical
 - Example: elephant, tiger, moose, ...
 - Binary (two categories)
 - Example: present, absent
 - Ordinal (two or more categories that can be naturally sorted)
 - Example: low, medium, high
- Real-world datasets include a mixture of types

Binary attributes, sets, dummy vars.

- Every binary attribute can be used as a marker of belonging to a set and viceversa
- One-hot encoding: every categorical attribute taking one of k values can be encoded as k "dummy" binary attributes

Name	Zip code	Parent	Capacity
Moog	08001	NULL	Small
Macarena	08002	NULL	Small
Input	08038	NULL	Medium
Loft	08018	Razzmatazz	Large
Nitsa	08004	Apolo	Large

Question

 Suppose you encode *capacity* using one-hot encoding. How many columns will your new dataset have?

Name	Zip code	Parent	Capacity
Moog	08001	NULL	Small
Macarena	08002	NULL	Small
Input	08038	NULL	Medium
Loft	08018	Razzmatazz	Large
Nitsa	08004	Apolo	Large

Answer: 6 columns

- 1. Name
- 2. Zipcode
- 3. Parent
- 4. Capacity_Small
- 5. Capacity_Medium
- 6. Capacity_Large

Textual data

- Text can be represented as:
 - As a string
 - "Bag of words": a set of binary variables, one for each word in the dictionary, with value True iff the word belongs to the text
 - "Vector space": a set of numerical variables indicating number of occurrences (often normalized by collection frequency)

Time series data

- . Contextual attributes
 - Timestamps, sequence number, ...
- . Behavioral attributes
 - Readings of a sensor, value of the variable, ...

Multivariate time series data has multiple behavioral attributes

Spatial data

- Two (lat/long) or three (lat/long/elevation) spatial attributes
- Remote sensing data, including satellite and aerial photos

Spatiotemporal data

Two main representations:

- Spatial and temporal attributes are contextual
 - Example: sea surface temperature
- Temporal attribute is contextual, spatial attribute is behavioral
 - Example: trajectories

Example: trajectory data aggregation

Bonchi, F., Castillo, C., Donato, D., & Gionis, A. (2009). Taxonomy-driven lumping for sequence mining. Data Mining and Knowledge Discovery, 19(2), 227-244.

Example: Functional regions in cities

H. Assem, B. Caglayan, T.S. Buda, D. O'Sullivan. ST-DenNetFus: Deep Spatio-Temporal Dense Networks for Network Demand Prediction. The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2018

Problem types

Data mining methods try to find relationships

- . Between columns
 - Find associations, correlations, ...
 - If there is one key column: classification, prediction,

. Between rows

. . .

- Find clusters
- Detect outliers

Example: Association pattern mining

 Sparse binary databases representing, e.g., items a person is interested in

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \in \{0, 1\}^{5 \times 4}$$

• The relative frequency of a pattern is its support

https://cs.nju.edu.cn/zlj/Course/DM_15.html

2

Association pattern mining (cont.)

- Given a binary $n \times d$ data matrix D,
 - determine all subsets of columns such that all the values in these columns take on the value True for at least a fraction *min_support* of the rows in the matrix.
- The relative frequency of a pattern is referred to as its support

Association pattern mining (cont.)

- . The confidence of a rule $A{\rightarrow}B$ is
 - support(A U B) / support(A)
- Example:
 - { Chips, Olives } \rightarrow { Beer }

Exercise

- . The confidence of a rule $A{\rightarrow}B$ is
 - support(A U B) / support(A)
- . Suppose
 - 10 people buy only Chips and Beer
 - 20 people buy only Chips and Olives
 - 30 people buy only Olives and Beer
 - 40 people buy all three: Chips, Olives, and Beer.

Answer

- The confidence of a rule $A \rightarrow B$ is: support(A U B) / support(A)
- Suppose
 - 10 people buy only Chips and Beer
 - 20 people buy only Chips and Olives
 - 30 people buy only Olives and Beer
 - 40 people buy all three: Chips, Olives, and Beer.
- Confidence of the rule { Chips, Olives } \rightarrow { Beer } ?

support({Chip, Olives, Beer} / support({Chip, Olives}) = 40 / (40+20) = 2/3

Clustering

- Partition records/rows in a way that
 - elements in the same partition are similar
 - elements in different partitions are different
- Applications:
 - Segmentation, summarization, ...
 - Sometimes a step in a larger DM algorithm

Clustering is not easy

- What does it mean to be similar?
- How many sets?

- . Can a record/row belong to more than one set?
- Can a record/row belong to no set at all? ...

Outlier detection

- Given a database, find records/rows that are different from the rest of the database
- Applications:
 - Intrusion detection, credit card fraud, interesting sensor events, medical diagnosis, ...

Outlier detection is not easy

- How different should they be?
- How many can be different?
- What does it mean to be different?
- What should we do with outliers?

Image credits: https://www.kdnuggets.com/2017/01/3-methods-deal-outliers.html

Data classification

- Sometimes data has a feature known as a class label
- A model can learn from previous data to associate a record/row to a class label
- One of the most useful tools in your belt!

Supervised Learning (Classification Algorithm)

Unsupervised Learning (Clustering Algorithm)

Western Digital.

Tasks with complex data types

- Frequent temporal patterns
- . Time series motifs
- Graph motifs
- Trajectory clusters
- Collective classification

Data types x Prototypical problems

Problem	Time series	Spatial	Sequence	Networks
Patterns	Motif-	Colocation	Sequential	Structural
	mining	patterns	patterns	patterns
	Periodic	24999201 (* 1966) 1970 (1970) (* 1970)	Periodic	
	pattern		Sequence	
	Trajectory	y patterns		
Clustering	Shape	Spatial	Sequence	Community
	clusters	clusters	clusters	detection
	Trajector	y clusters		
Outliers	Position outlier	Position outlier	Position outlier	Node outlier
	Shape outlier	Shape outlier	Combination	Linkage
		0.00	outlier	outlier
	Trajectory			Community
	outl	iers		outliers
Classification	Position	Position	Position	Collective
	classification	classification	classification	classification
	Shape	Shape	Sequence	Graph
	classification	classification	classification	classification
	Trajectory classification			

Data Mining, The Textbook (2015) by Charu Aggarwal

- Place products in a store to maximize co-purchases of items frequently bought together
 - Input data: baskets
 - Output: similar pairs
 - Algorithm: frequent pattern mining

- Recommend movies to users in a video-on-demand platform
 - Input data: viewing history
 - Output: recommendations for a user
 - Simple algorithm: k nearest neighbors

- Help diagnose if an electrocardiogram is associated to a health problem
 - Input data: time series, possibly multi-dimensional
 - Output: binary label or risk score
 - Algorithms: outlier detection or classification

- Help a sysadmin determine if an intruder is trying or has accessed the network
 - Input data: time series of event records
 - Output: binary label or risk score
 - Algorithms: event detection

Exercise

Which ones would you say are data mining tasks?

- A) Dividing the customers of a company by postal code
- B) Finding credit card scammers among customers of a company
- C) Computing the total sales of a company
- D) Sorting a student database by student identification number
- E) Predicting the future stock price of a company using past records
- F) Determine when a complex machine needs to be repaired
- G) Extracting the frequencies of a sound wave

Answers

- A) Dividing the customers of a company by postal code
- B) Finding credit card scammers among customers of a company
- C) Computing the total sales of a company
- D) Sorting a student database by student identification number
- E) Predicting the future stock price of a company using past records
- F) Determine when a complex machine needs to be repaired
- G) Extracting the frequencies of a sound wave

Major challenges

Methodological challenges

- Mining high-dimensional data
- Handling uncertainty, noise, incompleteness, ...
- Mining data from a domain in which you do not have expertise, or worse, in which you believe you have expertise
 - Conclusions are often worthless if you do not talk with domain experts

User interaction challenges

- Users should ask questions that matter to them
- Performing interactive mining
- Presenting and visualizing data mining results

Efficiency and scalability

- Even for polynomial-type algorithms, a process can become unreasonably slow or require an unreasonable amount of space
- Streaming and/or distributed mining algorithms can help to some extent

Diversity of database types

- Real databases are high dimensional and involve a mixture of various data types
- Sometimes you need to integrate from dynamic, networked, globally distributed data sources

Data mining can be harmful

- . Social impacts of data mining
 - Who wins? And more importantly, who loses?
- Privacy-preserving data mining
 - Avoid invisible, pervasive, invasive data mining

Summary

Things to remember

- . Types of data
- Types of data mining methods
- Prototypical data mining scenarios
- . Typical challenges of data mining

Exercises for this topic

- Section 1.9 of Data Mining, The Textbook (2015) by Charu Aggarwal
- Exercises 1.7 of Introduction to Data Mining, Second Edition (2019) by Tan et al.