

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — <u>https://chato.cl/teach</u> Instructor: Dr. Teodora Sandra Buda — <u>https://tbuda.github.io/</u>

I'M A DATA SCIENTIST

AND I HAVE A VERY PARTICULAR SET OF Skills I have acquired over a very long career

implip.com

Taken (2008)

Main Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapter 1) + <u>slides by Lijun Zhang</u>
- Mining of Massive Datasets, 2nd edition (2014) by Leskovec et al. (<u>Chapter 1</u>)
- Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al. (Chapters 1-2)

(Banana for scale)

Data Mining

What do these have in common?

https://en.wikipedia.org/wiki/Writing

Vinyl

(Answer: they are analog)

What do these have in common?

8GB (front) vs 8B (back)

Floppy disks (8", 5 1/4", 3 1/2")

Compact disk

The age of "Big Data"

The **co-evolution** of **storage** capacity, **transmission** capacity, and **processing** capacity

Wikipedia definition

- **Data mining** is the process of
 - discovering patterns in
 - large data sets
 - involving methods at the intersection of
 - machine learning,
 - statistics, and
 - database systems.

Informal definition

Given **lots of data**, discover **patterns** and **models** that are:

- Valid hold on new data with some certainty
- Useful should be possible to act on them
- . Unexpected or novel non-obvious
- . Understandable interpretable
- Complete contain most of the interesting information

Example : 300 numbers

٠

8.5998019	10.82452538	10.25496714	9.9264092	10.26304865	8.80526888	8.96569273	9.00883512	9.82813977	10.19311326
9.6545295	10.83958189	12.20970744	10.41521275	10.15902266	9.86904675	10.17021837	10.58768438	12.07341981	8.45713965
9.62152893	11.2494364	9.30073426	10.12753479	11.06429886	9.80406205	9.74418407	11.15815923	10.87659275	10.39190038
10.52911904	10.84125322	11.98925384	10.63545001	9.07420116	10.48011257	11.32273164	9.4831463	10.67973822	10.87064128
9.35940084	9.51149749	11.13211644	9.23292561	8.4767592	9.64339604	9.91374069	9.84184184	9.85576594	9.18523161
10.27107348	8.7511958	8.70297841	10.50609814	11.1908866	10.59484161	10.60027882	9.06375121	10.48534475	9.34253203
10.37303225	9.27441407	11.27229628	12.88441445	9.80825939	9.09844847	10.82873991	8.89169535	10.43092526	7.43215579
10.29787802	9.87946998	8.3799398	10.21263966	9.93826568	9.17325487	10.22256677	10.04892038	11.01233696	9.6145273
9.9495437	10.51474851	9.19288505	7.87728009	9.987364	10.94639021	10.01814962	9.40505023	8.87242546	10.23686131
8.90710325	10.31678617	10.4571519	9.04315227	9.85321707	11.89885306	6.99926999	10.71534924	10.29215034	10.59516732
9.8807174	9.01321711	8.45289144	9.1739316	7.90909364	9.42165081	10.37087284	9.57754821	9.60350044	10.75691005
8.24594836	10.33419146	9.7779209	9.51609087	10.25712725	12.1256587	9.53397549	9.44765209	9.53901558	9.8006768
9.633075	11.17692346	11.00022919	8.38767624	8.63908897	8.10049333	10.66422258	10.70986552	10.82945121	10.45206684
9.21578565	10.21230495	10.28984339	9.4130091	10.54597988	10.8042254	10.52795479	10.76288124	11.3554357	11.484667
10.36068758	8.18239896	11.20998409	9.88574571	9.8811874	10.64332788	8.67828643	9.23619936	10.71263899	9.36036772
8.80204902	8.84117879	9.60177677	8.82383074	9.85787872	10.30883419	10.09771435	10.33417508	8.94003225	9.63795622
8.88926589	8.51484154	10.61543214	10.10520145	10.23046826	11.22923654	10.25575855	10.4210496	9.79970778	7.70796076
9.56309629	10.82893108	10.4055698	10.12121772	9.38935918	9.48947921	9.53357322	9.87589518	10.5455508	9.98665703
9.440398	9.67368819	12.94191966	10.01303924	12.14295086	9.58399348	10.92799244	10.4654533	10.14613624	9.29818262
9.25613292	11.59370587	8.62517536	10.29703335	9.11065832	10.68766309	9.86507094	10.58314944	10.65232968	8.13400366
11.0414868	10.16883849	10.23649503	11.51859843	9.4754405	10.88103754	8.6249062	9.64581983	8.80660132	10.3794072
11.7687303	9.6768357	10.83753706	12.39138541	9.45756373	10.4746549	11.44321655	10.70109831	8.36186335	8.99123853
10.7221973	9.25735885	10.11287178	9.77908247	10.05372548	12.32358117	9.09128196	10.27487412	8.31704578	9.67337192
11.1712355	11.33146049	10.44967579	9.58649468	9.5908432	10.53829167	10.16738708	10.45433891	10.79223358	11.3936216
9.27709756	8.91159056	8.67186161	7.83968452	11.00207472	10.61085929	11.15868605	10.13873855	9.29370024	10.49794191
10.49884897	9.77150045	8.80503866	10.08775177	11.38167004	10.42724794	11.11626475	10.68890453	10.49280739	9.53675721
9.74560138	10.34343033	10.19711682	9.20212506	9.06407316	10.07228419	11.06791431	12.10523742	8.72119193	10.04645774
11.47090441	8.92472486	10.04585273	10.41149437	9.90118185	9.02229964	8.66708035	11.53976046	11.40609367	9.73014878
8.94607876	11.562354	9.58552216	9.74172847	9.64220948	9.69459042	9.58460199	11.14917832	9.49543794	9.46369271
10.16544667	9.92277128	9.61975057	11.11679747	9.42894032	9.25751891	11.44948256	8.16601628	10.11500258	9.42431821

What are these numbers?

Example: 300 numbers (cont.)

Through *statistical modeling* we can find the data comes from a Normal distribution with mean 10 and standard deviation 1

 Normal(μ=10,σ=1) is a model for the data


```
import numpy as np
                                              python
import matplotlib.pyplot as plt
mu=10
sigma=1
sample = np.random.normal(mu, sigma, 300)
out, bins, ignored = plt.hist(sample, 30,
density=True)
plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
linewidth=2, color='r')
plt.xlabel("Number")
plt.ylabel("Frequency")
plt.show()
```


Data Operators

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Describing vs Predicting

- Descriptive methods
 - Find human-interpretable patterns that describe the data
 - Example: Clustering

- Predictive methods
 - Use some variables to predict unknown or future values of other variables
 - Example: recommender systems

Characterizing vs Distinguishing

- Data characterization methods
 - A summary of the general characteristics or features of a target class of data

• Data discrimination methods

 A comparison of the general features of the target class data objects against the general features of objects from one or multiple contrasting classes

Data mining has several goals

- To produce a **model**
 - E.g., a regression model for a numerical variable, or a classification model for a categorical variable
- To create a **summary**
- To extract prominent features

Example summary: clustering

Picking the right features

- Representing these flowers by their *petal length* and *sepal length* was key
 - These are good features for this task
- Other features such as color or number of leaves may not be so good
- Feature selection is key!

Features: a matter of life or death

Another pattern-finding example

Source: Centauro Blog (2017)

Example: complex features

- Given shopping baskets of previous customers, determine:
 - Frequent itemsets (bought together)
 - Similar items

 (e.g., for
 recommendations)

Risk #1: Spurious patterns

- A risk with "Data mining" is that an analyst can "discover" patterns that are **meaningless**
- If you look in more places for interesting patterns than your amount of data will support, you are bound to find something (~Bonferroni principle)

If you interrogate data hard enough it will tell you what you want to hear

Risk #1: Spurious patterns

Risk #2: Surveillance state

- Attention-grabbing evil actions are also very rare, with consequences:
 - Suppose 1 in a million in a suicide bomber
 - Catching one suicide bomber a year on average means examining 999.999 innocent people
- A system with 1% false positive rate will flag ~10K people as potential suicide bombers

Data mining (DM) vs other disciplines

- For a database person, DM means analytic processing
- For a machine learning person, DM means modeling
- For an algorithms person, DM means ensuring scalability

• Our focus will be on scalable algorithms

Data rich but information poor

- Fast-paced data streams become data archives that become data tombs
- Decisions could be better made by using data that already exists but is hard to "mine"

Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al.

Knowledge **Discovery** from Data

- KDD, a popular acronym
 - "Discovery" is Data Mining
- Other names: knowledge mining from data, knowledge extraction, data/pattern analysis

Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al.

Typical stages of KDD

- 1) Data Cleaning
- 2) Data Integration
- 3) Data Selection
- 4) Data Transformation
- 5) Data Mining ← application of a DM algorithm
- 6) Pattern Evaluation
- 7) Knowledge Presentation

Typical stages of KDD

- 1) Data Cleaning
- 2) Data Integration
- 3) Data Selection
- 4) Data Transformation
- 5) Data Mining
- 6) Pattern Evaluation
- 7) Knowledge Presentation

Summary

Things to remember

- Define and contrast:
 - Describing vs Predicting
 - Characterizing vs Discriminating
- Describe the stages of the KDD process

Additional contents (not included in exams)

Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al.

Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al.